Color Texture Analysis for Tear Film Classification: A Preliminary Study

  • D. Calvo
  • A. Mosquera
  • M. Penas
  • C. García-Resúa
  • B. Remeseiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6112)


The tear lipid layer is not homogeneous among the population and its classification depends on its width. Too thin or too thick films can lead to unhealthy eyes as well as create problems when interacting with contact lenses. This work proposes a preliminary methodology to classify the tear lipid layer according to its texture into four main categories. The proposed methodology works on several stages to detect the region of interest, extract the texture descriptors on colour information and classify these descriptors. The method has been tested on several images from each tear type. In some cases, we obtain classification results over the 90%.


Tear film lipid layer opponent colors band pass filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holly, F.: Tear film physiology. Int. Ophthalmol. Clin. 27, 2–6 (1987)CrossRefGoogle Scholar
  2. 2.
    Holly, F., Lemp, M.: Tear film physiology and dry eyes. Surv. Ophthalmol. 22, 69–87 (1977)CrossRefGoogle Scholar
  3. 3.
    Guillon, M., Styles, E., Guillon, J., Maissa, C.: Preocular tear film characteristics of nonwearers and sof contact lens wearers. Optom. Vis. Sci. 74, 273–279 (1997)CrossRefGoogle Scholar
  4. 4.
    Fullard, R., Snyder, C.: Proteins level in nonstimulated and stimulated tears of normal human subjects. Invest. Ophtalmol. Vis. Sci. 31, 1119–1126 (1990)Google Scholar
  5. 5.
    Lemp, M., Holly, F., Iwata, S., Dohlman, C.: The precorneal tear film. i. factors in spreading and maintaining a continuous tear film over corneal surface. Arch. Ophtalmol. 83, 89–94 (1970)Google Scholar
  6. 6.
    Craig, J.: Structure and function of the preocular tear film. The Tear Film, structure, function and clinical evaluation. Butterworth-Heinemann, London (2002)Google Scholar
  7. 7.
    Macri, A., Pflugfelder, S.: Correlation of the schirmer 1 and fluorescein clearance tests with the severity of corneal epithelial and eyelid disease. Arch. Ophtalmol. 118, 1632–1638 (2000)Google Scholar
  8. 8.
    Tomlinson, A., Blades, K., Pearce, E.: What does the phenol red thread test actually measure? Optom. Vis. Sci. 78, 142–146 (2001)CrossRefGoogle Scholar
  9. 9.
    Balofun, M., Ashaye, A., Ajayi, B., Osuntokun, O.: Tear break-up time in eyes with pterygia and pingueculae in ibadan. West Afr. J. Med. 24, 162–166 (2005)Google Scholar
  10. 10.
    Cho, P., Brown, B.: Review of the tear break-up time and a closer look at the tear break-up time of hong kong chinese. Optom. Vis. Sci. 70, 30–38 (1993)CrossRefGoogle Scholar
  11. 11.
    Tomlinson, A., Khanal, S., Ramaesh, K., et al.: Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest. Ophthalmol. Vis. Sci. 47, 4309–4315 (2006)CrossRefGoogle Scholar
  12. 12.
    Foulks, G., Bron, A.: meibomian gland dysfunction: a clinical scheme for description, diagnosis, classification, and grading. Ocul. Surf. 1, 107–126 (2003)Google Scholar
  13. 13.
    Guillon, J.: Non-invasive tearscope plus routine for contact lens fitting. cont lens anterior eye. Ocul. Surf. 21(suppl. 1), 31–40 (1998)Google Scholar
  14. 14.
    Giraldez, M., Naroo, S., Garcia-Resua, C.: A preliminary investigation into the relationship between ocular surface temperature and lipid layer thickness. Cont. Lens Anterior Eye 32, 177–180 (2009)CrossRefGoogle Scholar
  15. 15.
    Garcia-Resua, C., Lire, M., Yebra-Pimentel, E.: Clinical evaluation of the tears lipid layer in a young university population. Rev. Esp. Contact 12, 37–41 (2005)Google Scholar
  16. 16.
    Craig, J., Tomlinson, A.: Importance of the lipid layer in human tear film stability and evaporation. Optom. Vis. Sci. 74, 8–13 (1997)CrossRefGoogle Scholar
  17. 17.
    Foulks, G.: The correlation between the tear film lipid layer and dry eye disease. Surv. Ophthalmol. 52, 369–374 (2007)CrossRefGoogle Scholar
  18. 18.
    Isreb, M., Greiner, J., Korb, D.: Correlation of lipid layer thickness measurements with fluorescein tear film break-up time and schirmer’s test. Eye 17, 79–83 (2003)CrossRefGoogle Scholar
  19. 19.
    King-Smith, P., Hinel, E., Nichols, J.: Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest. Ophthalmol. Vis. Sci. (2009)Google Scholar
  20. 20.
    Guillon, J.: Abnormal lipid layers: observation, differential diagnosis and classification. Lacrimal Gland, Tear Film and Dry Eye Síndromes 2. Sullivan, New York (1998)Google Scholar
  21. 21.
    Fogt, N., King-Smith, P., Tuell, G.: Interferometric measurement of tear film thickness by use of spectral oscillations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 268–275 (1998)CrossRefGoogle Scholar
  22. 22.
    King-Smith, P., Fink, B., Fogt, N.: Three interferometric methods for measuring the thickness of layers of the tear film. Optom. Vis. Sci. 76, 19–32 (1999)CrossRefGoogle Scholar
  23. 23.
    Goto, E., Dogru, M., Tsubota, K.: Computer-synthesis of an interference color chart of human tear lipid layer, by a colorimetric approach. Invest. Ophthalmol. Vis. Sci. 44, 4693–4697 (2003)CrossRefGoogle Scholar
  24. 24.
    Guillon, J.: Use of the tearscope plus and attachments in the routine examination of the marginal dry eye contact lens patient. Adv. Exp. Med. Biol. 438, 859–867 (1998)Google Scholar
  25. 25.
    Morris, C.G., Maisto, A.A.: Understandig Psycology. Prentice Hall, Englewood Cliffs (2000)Google Scholar
  26. 26.
    Huervich, L., Jameson, D.: An opponent-process theory of color vision. Physiol. Rev. 64, 384–404 (1957)Google Scholar
  27. 27.
    Hering, E.: Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge (1964)Google Scholar
  28. 28.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Calvo
    • 1
  • A. Mosquera
    • 2
  • M. Penas
    • 1
  • C. García-Resúa
    • 3
  • B. Remeseiro
    • 1
  1. 1.VARPA Group, Dept. of Computer ScienceUniv. A CoruñaSpain
  2. 2.Artificial Vision Group, Dept. of Electronics and Computer ScienceUniv. Santiago de CompostelaSpain
  3. 3.Optometry Group, Dept. Aplied PhysicsUniv. Santiago de CompostelaSpain

Personalised recommendations