Queue and Priority Queue Based Algorithms for Computing the Quasi-distance Transform

  • Raffi Enficiaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6111)

Abstract

The quasi-distance transform introduced by Beucher shows interesting properties for various tasks in image processing such as segmentation, filtering and images simplification. Despite its simple formulation, a naive and direct implementation of the transform leads to poor results in terms of computational time. This article proposes a new algorithm for computing the quasi-distance, based on a front propagating approach by means of queues and hierarchical queues. Quantitative analysis of the running time are provided, and show an exponential downscale of the complexity compared to the original algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beucher, S.: Numerical Residues. In: Proceedings of the 7th International Symposium on Mathematical Morphology, pp. 23–32 (2005)Google Scholar
  2. 2.
    Beucher, S.: Transformations résiduelles en morphologie numérique. Technical report of the Mathematical Morphology Center (2003)Google Scholar
  3. 3.
    Hanbury, A., Marcotegui, B.: Waterfall segmentation of complex scenes. In: 7th Asian Conference on Computer Vision (2006)Google Scholar
  4. 4.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation (1979)Google Scholar
  5. 5.
    Lantuéjoul, C., Beucher, S.: On the use of geodesic metric in image analysis. Journal of Microscopy 121, 39–49 (1981)Google Scholar
  6. 6.
    Brambor, J.: Algorithmes de la Morphologie Mathématique pour les architectures orientées flux. PhD Thesis, Mathematical Morphology Center (2006)Google Scholar
  7. 7.
    Enficiaud, R.: Algorithmes multidimensionels et multispectraux en morphologie mathématique: approche par méta-programmation. PhD Thesis, Mathematical Morphology Center (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raffi Enficiaud
    • 1
  1. 1.INRIA Paris-Rocquencourt, Domaine de VoluceauLe Chesnay CedexFrance

Personalised recommendations