Advertisement

Significantly Improving Scan-Based Shape Representations Using Rotational Key Feature Points

  • Yasser Ebrahim
  • Maher Ahmed
  • Siu-Cheung Chau
  • Wegdan Abdelsalam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6111)

Abstract

In a previous paper we have presented the idea of representing the shape of a 2D object by scanning it following a Hilbert curve then performing wavelet smoothing and sampling. We also introduced the idea of using only a subset of the resulting signature for comparison purposes. We called that set the Key Feature Points (KFPs). In this paper we introduce the idea of taking the KFPs over a number of views of the original shape. The proposed improvement results in a significant increase in recognition rates when applied to the MPEG-7 and ETH-80 data sets when the Hilbert scan is used. Similar improvement is achieved when the raster scan is used.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lambert, S., de Leau, E., Vuurpijl, L.: Using pen-based outlines for object-based annotation and image-based queries. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 585–592. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Ebrahim, Y., Ahmed, M., Abdelsalam, W., Chau, S.-C.: Shape representation and description using the hilbert curve. Pattern Recognition Letters 30(4), 348–358 (2009)CrossRefGoogle Scholar
  3. 3.
    Latechi, L.J., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR 2000: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2000), Washington, DC, USA. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  4. 4.
    Adamek, T., O’Connor, N.E.: A multiscale representation method for non-rigid shapes with a single closed contour. IEEE Transactions on Circuits and Systems for Video Technology 14(5) (May 2004)Google Scholar
  5. 5.
    Adamek, T., O’Coonner, N.: Efficient contour-based shape representation and matching. In: The 5th ACM SIGMM International Workshop on Multimedia Information Retrieval (2003)Google Scholar
  6. 6.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: A survey of shape analysis techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 116–125 (2003)CrossRefGoogle Scholar
  7. 7.
    Tu, Z., Yuille, A.L.: Shape matching and recognition - using generative models and informative features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 195–209. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Ling, H., Jacobs, D.W.: Using the inner-distance for classification of articulated shapes. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 2, pp. 719–726. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  9. 9.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, Wisconsin, June 2003, pp. 409–415 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yasser Ebrahim
    • 1
  • Maher Ahmed
    • 1
  • Siu-Cheung Chau
    • 1
  • Wegdan Abdelsalam
    • 2
  1. 1.Wilfrid Laurier UniversityWaterlooCanada
  2. 2.University of GuelphGuelphCanada

Personalised recommendations