Linked Multicomponent Robotic Systems: Basic Assessment of Linking Element Dynamical Effect

  • Borja Fernandez-Gauna
  • Jose Manuel Lopez-Guede
  • Ekaitz Zulueta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6076)


The Linked Multicomponent Robotic Systems are characterized by the existence of a non-rigid linking element. This linking element can produce many dynamical effects that introduce perturbations of the basic system behavior, different from uncoupled systems. We show through a simulation of a distributed control of a hose tranportation system, that even a minimal dynamical feature of the hose (elastic forces oppossing stretching) can produce significant behavior perturbations.


Mobile Robot Elastic Force Path Tracking Robotic Unit Consecutive Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duro, R.J., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponent robotic system development. Information Sciences (2010) (in press)Google Scholar
  2. 2.
    Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. In: Robotics and Autonomous Systems (submitted 2010)Google Scholar
  3. 3.
    Echegoyen-Ferreira, Z.: Contributions to Visual Servoing for Legged and Linked Multicomponent Robots. PhD thesis, UPV/EHU (2009)Google Scholar
  4. 4.
    Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)CrossRefGoogle Scholar
  5. 5.
    Huang, L.: Speed control of differentially driven wheeled mobile robots: Model-based adaptive approach. Journal of Robotic Systems 22(6), 323–332 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Klancar, G., Skrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robotics and Autonomous Systems 55, 460–469 (2007)CrossRefGoogle Scholar
  7. 7.
    Koh, K.C., Cho, H.S.: A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. Journal of Intelligent and Robotic Systems 24, 367–385 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, N.: Intelligent path following method for nonholonomic robot using fuzzy control. In: Second International Conference on Intelligent Networks and Intelligent Systems (2009)Google Scholar
  9. 9.
    McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooperative timing missions. AIAA Journal of Guidance, Control, & Dynamics 28(1), 150–161 (2005)CrossRefGoogle Scholar
  10. 10.
    Oriolo, G., De Luca, A., Vendittelli, M.: Wmr control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Trans. Control Systems Technology 10(6), 835–852 (2002)CrossRefGoogle Scholar
  11. 11.
    Raimondi, F.M., Melluso, M.: A new fuzzy robust dynamic controller for autonomous vehicles with nonholonomic constraints. Robotics and Autonomous Systems 52, 115–131 (2005)CrossRefGoogle Scholar
  12. 12.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  13. 13.
    Shi-Cai, L., Da-Long, T., Guang-Jun, L.: Formation control of mobile robots with active obstacle avoidance. Acta Automatica Sinica 33(5), 529–535 (2007)CrossRefGoogle Scholar
  14. 14.
    De La Nava, I.V.: On Computational Intelligence Tools for Vision Based Navigation of Mobile Robots. PhD thesis, UPV/EHU (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Borja Fernandez-Gauna
    • 1
  • Jose Manuel Lopez-Guede
    • 1
  • Ekaitz Zulueta
    • 1
  1. 1.Computational Intelligence GroupUniversidad del Pais VascoSpain

Personalised recommendations