Advertisement

Thrombus Volume Change Visualization after Endovascular Abdominal Aortic Aneurysm Repair

  • Josu Maiora
  • Guillermo García
  • Iván Macía
  • Jon Haitz Legarreta
  • Fernando Boto
  • Céline Paloc
  • Manuel Graña
  • Javier Sanchez Abuín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6076)

Abstract

A surgical technique currently used in the treatment of Abdominal Aortic Aneurysms (AAA) is the Endovascular Aneurysm Repair (EVAR). This minimally invasive procedure involves inserting a prosthesis in the aortic vessel that excludes the aneurysm from the bloodstream. The stent, once in place acts as a false lumen for the blood current to travel down, and not into the surrounding aneurysm sac. This procedure, therefore, immediately takes the pressure off the aneurysm, which thromboses itself after some time. Nevertheless, in a long term perspective, different complications such as prosthesis displacement or bloodstream leaks into or from the aneurysmatic bulge (endoleaks) could appear causing a pressure elevation and, as a result, increasing the danger of rupture. The purpose of this work is to explore the application of image registration techniques to the visual detection of changes in the thrombus in order to assess the evolution of the aneurysm. Prior to registration, both the lumen and the thrombus are segmented

Keywords

Mutual Information Abdominal Aortic Aneurysm Abdominal Aortic Aneurysm False Lumen Rigid Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cronenwett, J., Krupski, W., Rutherford, R.: Abdominal aortic and iliac aneurysm. In: Vascular Surgery, Saunders, Philadelphia, pp. 1246–1280 (2000)Google Scholar
  2. 2.
    Rodin, M.B., Daviglus, M.L., Wong, G.C., Liu, K., Garside, D.B., Greenland, P., Stamler, J.: Middle age cardiovascular risk factors and abdominal aortic aneurysm in older age. Hypertension 42(1), 61–68 (2003)CrossRefGoogle Scholar
  3. 3.
    Veith, F.J., Marin, M.L., Cynamon, J., Schonholz, C., Parodi, J.: 1992: Parodi, Montefiore, and the first abdominal aortic aneurysm stent graft in the United States. Annals of Vascular Surgery 19(5), 749–751 (2005)CrossRefGoogle Scholar
  4. 4.
    Ellozy, S.H., Carroccio, A., Lookstein, R.A., Jacobs, T.S., Addis, M.D., Teodorescu, V.J., Marin, M.L.: Abdominal aortic aneurysm sac shrinkage after endovascular aneurysm repair: Correlation with chronic sac pressure measurement. Journal of Vascular Surgery 43(1), 2–6 (2006)CrossRefGoogle Scholar
  5. 5.
    Dias, N.V., Ivancev, K., Malina, M., Resch, T., Lindblad, B., Sonesson, B.: Intra-aneurysm sac pressure measurements after endovascular aneurysm repair: Differences between shrinking, unchanged, and expanding aneurysms with and without endoleaks. Journal of Vascular Surgery 39(6), 1229–1235 (2004)CrossRefGoogle Scholar
  6. 6.
    Mattes, J., Steingruber, I., Netzer, M., Fritscher, K., Kopf, H., Jaschke, W., Schubert, R.: Quantification of the migration and deformation of abdominal aortic aneurysm stent grafts - art. no. 61440V. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging 2006: Image Processing, Pts 1-3, p. V1440 (2006)Google Scholar
  7. 7.
    Garcia-Sebastian, M., Gonzalez, A.I., Grana, M.: An adaptive field rule for non-parametric MRI intensity inhomogeneity estimation algorithm. Neurocomputing 72(16-18), 3556–3569 (2009)CrossRefGoogle Scholar
  8. 8.
    Macía, I., Legarreta, J.H., Paloc, C., Graña, M., Maiora, J., García, G., de Blas, M.: Segmentation of Abdominal Aortic Aneurysms in CT Images using a Radial Model Approach. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 664–671. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ibanez, L., Ng, L., Gee, J., Aylward, S.: Registration patterns: The generic framework for image registration of the insight toolkit. In: Proceedings of IEEE International Symposium on Biomedical Imaging (2002)Google Scholar
  10. 10.
    Yanovsky, I., Leow, A.D., Lee, S., Osher, S.J., Thompson, P.M.: Comparing registration methods for mapping brain change using tensor-based morphometry. Medical Image Analysis 13(5), 679–700 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Josu Maiora
    • 1
    • 4
  • Guillermo García
    • 2
  • Iván Macía
    • 3
    • 4
  • Jon Haitz Legarreta
    • 3
  • Fernando Boto
    • 3
  • Céline Paloc
    • 3
  • Manuel Graña
    • 4
  • Javier Sanchez Abuín
    • 5
  1. 1.Electronics and Telecomunications DepartmentTechnical University School, University of the Basque CountryDonostia-San SebastiánSpain
  2. 2.Engineering Systems and Automatic DepartmentTechnical University School, University of the Basque CountryDonostia-San SebastiánSpain
  3. 3.eHealth and Biomedical Applications DepartmentVicomtechDonostia-San SebastiánSpain
  4. 4.Computational Intelligence Group, Computer Science FacultyUniversity of the Basque CountryDonostia-SanSebastiánSpain
  5. 5.Interventional Radiology ServiceDonostia HospitalDonostia-SanSebastiánSpain

Personalised recommendations