Advertisement

Partial Least Squares for Feature Extraction of SPECT Images

  • F. Segovia
  • J. Ramírez
  • J. M. Górriz
  • R. Chaves
  • D. Salas-Gonzalez
  • M. López
  • I. Álvarez
  • P. Padilla
  • C. G. Puntonet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6076)

Abstract

Single Photon Emission Computed Tomography (SPECT) images are commonly used by physicians to assist the diagnosis of several diseases such as Alzheimer’s disease (AD). The diagnosis process requires the visual evaluation of the image and usually entails time consuming and subjective steps. In this context, computer aided diagnosis (CAD) systems are desired. This work shows a complete CAD system that uses SPECT images for the automatic diagnosis of AD and combines of support vector machine (SVM) learning with a novel methodology for feature extraction based on the partial least squares (PLS) regression model. This methodology avoids the well-known small sample size problem that multivariate approaches suffer and yields peak accuracy rates of 95.9%. The results achieved are compared with the obtained ones by an PCA-based CAD system which is used as baseline.

Keywords

Support Vector Machine Single Photon Emission Compute Tomography Feature Extraction Partial Little Square Spect Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friston, K., et al.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)CrossRefGoogle Scholar
  2. 2.
    Illan, I.A.: Análisis en Componentes de Imágenes Funcionales para la Ayuda al Diagnóstico de la Enfermedad de Alzheimer. PhD thesis, Universidad de Granada (July 2009)Google Scholar
  3. 3.
    Górriz, J.M., Lassl, A., Ramírez, J., Salas-González, D., Puntonet, C.G., Lang, E.W.: Automatic selection of rois in functional imaging using gaussian mixture models. Neuroscience Letter 460(2), 108–111 (2009)CrossRefGoogle Scholar
  4. 4.
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.: Forecasting the global burden of alzheimer’s disease. Alzheimer’s and Dementia 3(3), 186–191 (2007)CrossRefGoogle Scholar
  5. 5.
    Stoeckel, J., Fung, G.: Svm feature selection for classification of spect images of alzheimer’s disease using spatial information. In: Proc. of the Fifth International Conference on Data Mining, ICDM 2005 (2005)Google Scholar
  6. 6.
    Álvarez, I., Górriz, J.M., Ramírez, J., Salas-González, D., López, M., Puntonet, C.G., Segovia, F.: Alzheimer’s diagnosis using eigenbrains and support vector machines. Electronics Letters 45(7), 342–343 (2009)CrossRefGoogle Scholar
  7. 7.
    Ramírez, J., Górriz, J.M., Chaves, R., López, M., Salas-González, D., Álvarez, I., Segovia, F.: SPECT image classification using random forests. IET Electronics Letters 45(12), 604–605 (2009)CrossRefGoogle Scholar
  8. 8.
    Chaves, R., Ramírez, J., Górriz, J.M., López, M., Salas-González, D., Álvarez, I., Segovia, F.: SVM-based computer aided diagnosis of the Alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters 461(3), 293–297 (2009)CrossRefGoogle Scholar
  9. 9.
    Duin, R.P.W.: Classifiers in almost empty spaces. In: Proceedings 15th International Conference on Pattern Recognition, vol. 2, pp. 1–7. IEEE, Los Alamitos (2000)Google Scholar
  10. 10.
    Wold, S., Ruhe, H., Wold, H., Dunn III, W.J.: The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverse. Journal of Scientific and Statistical Computations 5, 735–743 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wold, H.: Path models with latent variables: The NIPALS approach. In: Quantitative Sociology: International perspectives on mathematical and statistical model building, pp. 307–357. Academic Press, London (1975)CrossRefGoogle Scholar
  12. 12.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)zbMATHGoogle Scholar
  13. 13.
    Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Chaves, R., Lassl, A., Rodrguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for SPECT data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • F. Segovia
    • 1
  • J. Ramírez
    • 1
  • J. M. Górriz
    • 1
  • R. Chaves
    • 1
  • D. Salas-Gonzalez
    • 1
  • M. López
    • 1
  • I. Álvarez
    • 1
  • P. Padilla
    • 1
  • C. G. Puntonet
    • 2
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaSpain
  2. 2.Dept. of Computer Architecture and Computer TechnologyUniversity of GranadaSpain

Personalised recommendations