Protein Fold Recognition with Combined SVM-RDA Classifier

  • Wiesław Chmielnicki
  • Katarzyna Sta̧por
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6076)


Predicting the three-dimensional (3D) structure of a protein is a key problem in molecular biology. It is also an interesting issue for statistical methods recognition. There are many approaches to this problem considering discriminative and generative classifiers. In this paper a classifier combining the well-known Support Vector Machine (SVM) classifier with Regularized Discriminant Analysis (RDA) classifier is presented. It is used on a real world data set. The obtained results improve previously published methods.


Support Vectore Machine Statistical classifiers RDA classifier protein fold recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)CrossRefGoogle Scholar
  2. 2.
    Prevost, L., Qudot, L., Moises, A., Michel-Sendis, C., Milgram, M.: Hybrid generative/disciminative classifier for unconstrained character recognition. Pattern Recognition Letters 26, 1840–1848 (2005)CrossRefGoogle Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at
  4. 4.
    Chothia, C.: One thousand families for the molecular biologist. Nature 357, 543–544 (1992)CrossRefGoogle Scholar
  5. 5.
    Ding, C.H., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)CrossRefGoogle Scholar
  6. 6.
    Dubchak, I., Muchnik, I., Holbrook, S.R., Kim, S.H.: Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. USA 92, 8700–8704 (1995)CrossRefGoogle Scholar
  7. 7.
    Dubchak, I., Muchnik, I., Kim, S.H.: Protein folding class predictor for SCOP: approach based on global descriptors. In: Proceedings ISMB (1997)Google Scholar
  8. 8.
    Lo Conte, L., Ailey, B., Hubbard, T.J.P., Brenner, S.E., Murzin, A.G., Chotchia, C.: SCOP: a structural classification of protein database. Nucleic Acids Res. 28, 257–259 (2000)CrossRefGoogle Scholar
  9. 9.
    Shen, H.B., Chou, K.C.: Ensemble classifier for protein fold pattern recognition. Bioinformatics 22, 1717–1722 (2006)CrossRefGoogle Scholar
  10. 10.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In: Proceedings of the twenty-first ICML, Banff, Alberta, Canada, July 4-8, p. 105 (2004)Google Scholar
  12. 12.
    Wang, L., Shen, X.: Multi-category support vector machines, feature selection and solution path. Statistica Sinica 16, 617–633 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nanni, L.: A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69, 2434–2437 (2006)CrossRefGoogle Scholar
  14. 14.
    Okun, O.: Protein fold recognition with k-local hyperplane distance nearest neighbor algorithm. In: Proceedings of the Second European Workshop on Data Mining and Text Mining in Bioinformatics, Pisa, Italy, pp. 51–57, September 24 (2004)Google Scholar
  15. 15.
    Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the ninth ICONIP, Singapore, November 18-22, vol. 5, pp. 2492–2496 (2002)Google Scholar
  16. 16.
    Pal, N.R., Chakraborty, D.: Some new features for protein fold recognition. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 1176–1183. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Chung, I.F., Huang, C.D., Shen, Y.H., Lin, C.T.: Recognition of structure classification of protein folding by NN and SVM hierarchical learning architecture. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 1159–1167. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Hobohm, U., Sander, C.: Enlarged representative set of Proteins. Protein Sci. 3, 522–524 (1994)CrossRefGoogle Scholar
  19. 19.
    Hobohm, U., Scharf, M., Schneider, R., Sander, C.: Selection of a representative set of structures from the Brookhaven. Protein Bank Protein Sci. 1, 409–417 (1992)CrossRefGoogle Scholar
  20. 20.
    Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large Margin DAGs for Multiclass Classification. In: Proceedings of Neural Information Processing Systems, NIPS 1999, pp. 547–553 (2000)Google Scholar
  21. 21.
    Fei, B., Liu, J.: Binary Tree of SVM: A New Fast Multiclass Training and Classification Algorithm. IEEE Transaction on Neural Networks 17(3) (2006)Google Scholar
  22. 22.
    Kijsirikul, B., Ussivakul, N.: Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of IJCNN, pp. 980–985 (2002)Google Scholar
  23. 23.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, New York (1990)zbMATHGoogle Scholar
  24. 24.
    Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Annals of Statistics 26(2), 451–471 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Dietterich, T.G., Bakiri, G.: Solving multiclass problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  26. 26.
    Friedman, J.H.: Regularized Discriminant Analysis. Journal of the American Statistical Association 84(405), 165–175 (1989)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, C.L., Fujisawa, H.: Classification and Learning for Character Recognition: Comparison of Methods and Remaining Problems. In: Proc. Int. Workshop on Neural 21 Networks and Learning in Document Analysis and Recognition, Seoul, Korea (August 2005)Google Scholar
  28. 28.
    Gori, M., Scarselli, F.: Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1121–1132 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wiesław Chmielnicki
    • 1
  • Katarzyna Sta̧por
    • 2
  1. 1.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityPoland
  2. 2.Institute of Computer ScienceSilesian University of TechnologyPoland

Personalised recommendations