Towards Component Based Design of Hybrid Systems: Safety and Stability

  • Werner Damm
  • Henning Dierks
  • Jens Oehlerking
  • Amir Pnueli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6200)


We propose a library based incremental design methodology for constructing hybrid controllers from a component library of models of hybrid controllers, such that global safety and stability properties are preserved. To this end, we propose hybrid interface specifications of components characterizing plant regions for which safety and stability properties are guaranteed, as well as exception mechanisms allowing safe and stability-preserving transfer of control whenever the plant evolves towards the boundary of controllable dynamics. We then propose a composition operator for constructing hybrid automata from a library of such pre-characterized components supported by compositional and automatable proofs of hybrid interface specifications.


Hybrid System Lyapunov Function Basic Component Parallel Composition Transition Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BEFB94]
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM) (1994)Google Scholar
  2. [Bor99]
    Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods and Software 10(1), 613–623 (1999), MathSciNetCrossRefzbMATHGoogle Scholar
  3. [DMO+07]
    Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.-R., Pang, J., Platzer, A., Segelken, M., Wirtz, B.: Automating Verification of Cooperation, Control, and Design in Traffic Applications. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 115–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. [DPJ09]
    Damm, W., Peikenkamp, T., Josko, B.: Contract Based ISO CD 26262 Safety Analysis. In: SAE World Congress – Session on Safety-Critical Systems (2009)Google Scholar
  5. [Fre05]
    Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [Fre06]
    Frehse, G.: On Timed Simulation Relations for Hybrid Systems and Compositionality. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 200–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [Fre08]
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT – International Journal on Software Tools for Technology Transfer 10(3), 263–279 (2008)CrossRefzbMATHGoogle Scholar
  8. [HMP01]
    Henzinger, T., Minea, M., Prabhu, V.S.: Assume-Guarantee Reasoning for Hierarchical Hybrid Systems. In: di Benedetto, M., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 275–290. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [JBS07]
    Jha, S., Brady, B.A., Seshia, S.A.: Symbolic Reachability Analysis of Lazy Linear Hybrid Automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 241–256. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. [JMM08]
    Josko, B., Ma, Q., Metzner, A.: Designing Embedded Systems using Heterogeneous Rich Components. In: Proceedings of the INCOSE International Symposium (2008)Google Scholar
  11. [Lya07]
    Lyapunov, M.A.: Problème général de la stabilité du movement. Ann. Fac. Sci. Toulouse 9, 203–474 (1907) (Translation of a paper published in Comm. Soc. Math. Kharkow, 1893, reprinted Ann. Math. Studies No. 17, Princeton Univ. Press, 1949)CrossRefGoogle Scholar
  12. [OT09]
    Oehlerking, J., Theel, O.: Decompositional construction of Lyapunov functions for hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 276–290. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. [Pet99]
    Pettersson, S.: Analysis and Design of Hybrid Systems. PhD thesis, Chalmers University of Technology, Gothenburg (1999)Google Scholar
  14. [PJ04]
    Prajna, S., Jadbabaie, A.: Safety Verification of Hybrid Systems Using Barrier Certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. [RPS99]
    Romanko, O., Pólik, I., Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1999)Google Scholar
  16. [Sta01]
    Stauner, T.: Systematic Development of Hybrid Systems. PhD thesis, Technische Universität München (2001)Google Scholar
  17. [Sta02]
    Stauner, T.: Discrete-time refinement of hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 407–420. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. [TPL04]
    Tabuada, P., Pappas, G.J., Lima, P.: Compositional abstractions of hybrid control systems. Discrete Event Dynamic Systems 14(2) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Werner Damm
    • 1
  • Henning Dierks
    • 2
  • Jens Oehlerking
    • 1
  • Amir Pnueli
    • 3
  1. 1.Department for Computer ScienceUniversity of OldenburgGermany
  2. 2.Department of Electrical and Information EngineeringHamburg University of Applied SciencesGermany
  3. 3.Computer Science Department, Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations