A Bottom-Up Method and Fast Algorithms for max independent set

  • Nicolas Bourgeois
  • Bruno Escoffier
  • Vangelis Th. Paschos
  • Johan M. M. van Rooij
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)

Abstract

We first propose a new method, called “bottom-up method”, that, informally, “propagates” improvement of the worst-case complexity for “sparse” instances to “denser” ones and we show an easy though non-trivial application of it to the min set cover problem. We then tackle max independent set. Following the bottom-up method we propagate improvements of worst-case complexity from graphs of average degree d to graphs of average degree greater than d. Indeed, using algorithms for max independent set in graphs of average degree 3, we tackle max independent set in graphs of average degree 4, 5 and 6. Then, we combine the bottom-up technique with measure and conquer techniques to get improved running times for graphs of maximum degree 4, 5 and 6 but also for general graphs. The best computation bounds obtained for max independent set are O*(1.1571n), O*(1.1918n) and O*(1.2071n), for graphs of maximum (or more generally average) degree 4, 5 and 6 respectively, and O*(1.2127n) for general graphs. These results improve upon the best known polynomial space results for these cases.

Keywords

Bottom-Up Method Max Independent Set Exact Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proc. SODA’99, pp. 856–857 (1999)Google Scholar
  2. 2.
    Bourgeois, N., Escoffier, B., Paschos, V.T.: An O *(1.0977n) exact algorithm for max independent set in sparse graphs. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 55–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast Algorithms for Max Independent Set in Graphs of Small Average Degree. CoRR, abs/0901.1563 (2009)Google Scholar
  4. 4.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure and conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)Google Scholar
  5. 5.
    Kneis, J., Langer, A., Rossmanith, P.: A Fine-grained Analysis of a Simple Independent Set Algorithm. In: Proc. FSTTCS 2009, pp. 287–298 (2009)Google Scholar
  6. 6.
    Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3. J. Discrete Algorithms 7, 191–212 (2009)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical Report 1251-01, LaBRI, Université de Bordeaux I (2001)Google Scholar
  9. 9.
    Van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer a faster algorithm for dominating set. In: STACS 2008, pp. 657–668 (2008)Google Scholar
  10. 10.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka!, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nicolas Bourgeois
    • 1
  • Bruno Escoffier
    • 1
  • Vangelis Th. Paschos
    • 1
  • Johan M. M. van Rooij
    • 2
  1. 1.LAMSADECNRS FRE 3234 and Université Paris-DauphineFrance
  2. 2.Department of Information and Computing SciencesUniversiteit UtrechtThe Netherlands

Personalised recommendations