Advertisement

On Feedback Vertex Set New Measure and New Structures

  • Yixin Cao
  • Jianer Chen
  • Yang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)

Abstract

We study the parameterized complexity of the feedback vertex set problem (fvs) on undirected graphs. We approach the problem by considering a variation of it, the disjoint feedback vertex set problem (disjoint-fvs), which finds a disjoint feedback vertex set of size k when a feedback vertex set of a graph is given. We show that disjoint-fvs admits a small kernel, and can be solved in polynomial time when the graph has a special structure that is closely related to the maximum genus of the graph. We then propose a simple branch-and-search process on disjoint-fvs, and introduce a new branch-and-search measure. The branch-and-search process effectively reduces a given graph to a graph with the special structure, and the new measure more precisely evaluates the efficiency of the branch-and-search process. These algorithmic, combinatorial, and topological structural studies enable us to develop an O(3.83 k kn 2) time parameterized algorithm for the general fvs problem, improving the previous best algorithm of time O(5 k k n 2) for the problem.

Keywords

Span Tree Input Graph Segment Edge Algorithm Feedback Computational Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures (manuscript, 2010)Google Scholar
  4. 4.
    Chen, J.: Minimum and maximum imbeddings. In: Gross, J., Yellen, J. (eds.) The Handbook of Graph Theory, pp. 625–641. CRC Press, Boca Raton (2003)Google Scholar
  5. 5.
    Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the feedback vertex set problems. Journal of Computer and System Sciences 74, 1188–1198 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)Google Scholar
  7. 7.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k) n 3) fpt algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225. Cambridge University Press, Cambridge (1992)Google Scholar
  9. 9.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  10. 10.
    Festa, P., Pardalos, P., Resende, M.: Feedback set problems. In: Handbook of Combinatorial Optimization, vol. A(suppl.), pp. 209–258. Kluwer Acad. Publ., Dordrecht (1999)Google Scholar
  11. 11.
    Fomin, F., Gaspers, S., Pyatkin, A.: Finding a minimum feedback vertex set in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 184–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Furst, M., Gross, J., McGeoch, L.: Finding a maximum-genus graph imbedding. Journal of the ACM 35(3), 523–534 (1988)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gabow, H., Stallmann, M.: Efficient algorithms for graphic matroid intersection and parity. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 210–220. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  17. 17.
    Li, D., Liu, Y.: A polynomial algorithm for finding the minimul feedback vertex set of a 3-regular simple graph. Acta Mathematica Scientia 19(4), 375–381 (1999)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Lovász, L.: The matroid matching problem. In: Algebraic Methods in Graph Theory, Colloquia Mathematica Societatis János Bolyai, Szeged, Hungary (1978)Google Scholar
  19. 19.
    Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yixin Cao
    • 1
  • Jianer Chen
    • 1
  • Yang Liu
    • 2
  1. 1.Department of Computer Science and EngineeringTexas A&M University 
  2. 2.Department of Computer ScienceUniversity of Texas - Pan American 

Personalised recommendations