Advertisement

GPU-Accelerated Robotic Intra-operative Laparoscopic 3D Reconstruction

  • Markus Moll
  • Hsiao-Wei Tang
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6135)

Abstract

In this paper we present a real-time intra-operative reconstruction system for laparoscopic surgery. The system builds upon a surgical robot for laparoscopy that has previously been developed by us. Such a system is valuable for surgeons, who can get a three dimensional visualization of the scene online, without having to postprocess data. We gain a significant speed increase over existing such systems by carefully parallelizing tasks and using the GPU for computationally expensive sub-tasks, making real-time reconstruction and visualization possible. Our implementation is also robust with respect to outliers and can potentially be extended to be used with non-robotic surgery. We demonstrate the performance of our system on ex-vivo samples and compare it to alternative implementations.

Keywords

Minimally Invasive Surgery Iterative Close Point Bundle Adjustment Drift Correction Surf Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
  2. 2.
    Bay, H., Tuytelaars, T., Gool, L.J.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker, description of the algorithm. Tech. rep., Intel Corporation Microprocessor Research Labs (2000) (from the OpenCV documentation)Google Scholar
  4. 4.
    Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Proceedings of Photogrammetric Computer Vision. The International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences (2006)Google Scholar
  5. 5.
    Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision (2007)Google Scholar
  6. 6.
    Koppel, D., Wang, Y.F., Lee, H.: Image-based rendering and modeling in video-endoscopy. In: Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2004, pp. 269–272. IEEE, Arlington (2004)CrossRefGoogle Scholar
  7. 7.
    Koppel, D., Wang, Y.F., Lee, H.: Robust and real-time image stabilization and rectification. In: Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing, vol. 1, pp. 320–355. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  8. 8.
    Lourakis, M.I.A., Argyros, A.A.: The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Tech. Rep. 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (August 2004), http://www.ics.forth.gr/~lourakis/sba
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: 3d reconstruction of complex structures with bundle adjustment: an incremental approach. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May 2006, pp. 3055–3061. Orlando, Florida (2006)CrossRefGoogle Scholar
  11. 11.
    Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-d tracking. In: Proceedings of the 2007 IEEE International Conference on Computer Vision (2007)Google Scholar
  12. 12.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), June 1994, pp. 593–600 (1994)Google Scholar
  13. 13.
    Wengert, C.: Quantitative Endoscopy. Ph.D. thesis, ETH Zürich (2008)Google Scholar
  14. 14.
    Zach, C., Gallup, D., Frahm, J.M.: Fast gain-adaptive klt tracking on the gpu. In: Proceedings of Computer Vision and Pattern Recognition Workshops, pp. 1–7 (2008)Google Scholar
  15. 15.
    Zinßer, T., Gräßl, C., Niemann, H.: Efficient feature tracking for long video sequences. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 326–333. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Moll
    • 1
  • Hsiao-Wei Tang
    • 2
  • Luc Van Gool
    • 1
    • 3
  1. 1.ESAT-PSI/IBBT, Department of Electrical EngineeringKatholieke Universiteit LeuvenHeverleeBelgium
  2. 2.Department of Mechanical EngineeringKatholieke Universiteit Leuven, PMAHeverleeBelgium
  3. 3.D-ITET/Computer Vision LaboratorySwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations