Surviving the Heterogeneity Jungle with Composite Mapping Operators

  • Manuel Wimmer
  • Gerti Kappel
  • Angelika Kusel
  • Werner Retschitzegger
  • Johannes Schoenboeck
  • Wieland Schwinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6142)


Model transformations play a key role in the vision of Model-Driven Engineering. Nevertheless, mechanisms like abstraction, variation and composition for specifying and applying reusable model transformations – like urgently needed for resolving recurring structural heterogeneities – are insufficiently supported so far. Therefore, we propose to specify model transformations by a set of pre-defined mapping operators (MOps), each resolving a certain kind of structural heterogeneity. Firstly, these MOps can be used in the context of arbitrary metamodels since they abstract from concrete metamodel types. Secondly, MOps can be tailored to resolve certain structural heterogeneities by means of black-box reuse. Thirdly, based on a systematic set of kernel MOps resolving basic heterogeneities, composite ones can be built in order to deal with more complex scenarios. Finally, an extensible library of MOps is proposed, allowing for automatically executable mapping specifications since every MOp exhibits a clearly defined operational semantics.


Executable Mappings Reuse Structural Heterogeneities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexe, B., Tan, W.-C., Velegrakis, Y.: STBenchmark: Towards a Benchmark for Mapping Systems. VLDB Endow. 1(1), 230–244 (2008)Google Scholar
  2. 2.
    Bézivin, J.: On the Unification Power of Models. Journal on Software and Systems Modeling 4(2), 31 (2005)Google Scholar
  3. 3.
    Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM Systems Journal 45(3), 621–645 (2006)CrossRefGoogle Scholar
  4. 4.
    Fabro, M.D., Valduriez, P.: Towards the development of model transformations using model weaving and matching transformations. SoSym 8(3), 305–324 (2009)CrossRefGoogle Scholar
  5. 5.
    Del Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A Generic Model Weaver. In: Proc. of IDM 2005 (2005)Google Scholar
  6. 6.
    Hull, R., King, R.: Semantic Database Modeling: Survey, Applications, and Research Issues. ACM Comput. Surv. 19(3), 201–260 (1987)CrossRefGoogle Scholar
  7. 7.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science of Computer Programming 72(1-2), 31–39 (2008)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kappel, G., Kargl, H., Reiter, T., Retschitzegger, W., Schwinger, W., Strommer, M., Wimmer, M.: A Framework for Building Mapping Operators Resolving Structural Heterogeneities. In: Proc. of UNISCON 2008, pp. 158–174 (2008)Google Scholar
  9. 9.
    Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: A context-based approach. The VLDB Journal 5(4), 276–304 (1996)CrossRefGoogle Scholar
  10. 10.
    Koenigs, A.: Model Transformation with Triple Graph Grammars. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Kramer, J.: Is abstraction the key to computing? Com. ACM 50(4), 36–42 (2007)CrossRefGoogle Scholar
  12. 12.
    Legler, F., Naumann, F.: A Classification of Schema Mappings and Analysis of Mapping Tools. In: Proc. of BTW 2007 (2007)Google Scholar
  13. 13.
    Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA - A MApping FRAmework for Distributed Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernández, M.A.: Clip: a visual language for explicit schema mappings. In: Proc. of ICDE 2008, pp. 30–39 (2008)Google Scholar
  15. 15.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Ramos, R., Barais, O., Jézéquel, J.M.: Matching Model-Snippets. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 121–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-Order Model Transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Varró, D., Pataricza, A.: Generic and meta-transformations for model transformation engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Wimmer, M., Kusel, A., Reiter, T., Retschitzegger, W., Schwinger, W., Kappel, G.: Lost in Translation? Transformation Nets to the Rescue!. In: Proc. of UNISCON 2009, pp. 315–327 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Manuel Wimmer
    • 1
  • Gerti Kappel
    • 1
  • Angelika Kusel
    • 2
  • Werner Retschitzegger
    • 2
  • Johannes Schoenboeck
    • 1
  • Wieland Schwinger
    • 2
  1. 1.Vienna University of TechnologyAustria
  2. 2.Johannes Kepler UniversityLinzAustria

Personalised recommendations