Comparative Testing of Face Detection Algorithms

  • Nikolay Degtyarev
  • Oleg Seredin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)

Abstract

Face detection (FD) is widely used in interactive user interfaces, in advertising industry, entertainment services, video coding, is necessary first stage for all face recognition systems, etc. However, the last practical and independent comparisons of FD algorithms were made by Hjelmas et al. and by Yang et al. in 2001. The aim of this work is to propose parameters of FD algorithms quality evaluation and methodology of their objective comparison, and to show the current state of the art in face detection. The main idea is routine test of the FD algorithm in the labeled image datasets. Faces are represented by coordinates of the centers of the eyes in these datasets. For algorithms, representing detected faces by rectangles, the statistical model of eyes’ coordinates estimation was proposed. In this work the seven face detection algorithms were tested; article contains the results of their comparison.

Keywords

face detection face localization accuracy comparative test face datasets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Faloutsos, C., Lin, K.I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 163–174 (1995)Google Scholar
  3. 3.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–874 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hjelmas, E., Low, B.K.: Face Detection: A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Jones, M.J.: Face Recognition: Where We Are and Where To Go From Here. IEEJ. Trans. on Elect., Information and Systems 129(5), 770–777 (2009)CrossRefGoogle Scholar
  7. 7.
    Kienzle, W., Bakir, G., Franz, M., Scholkopf, B.: Face detection – efficient and rank deficient. Advan. in neural inform. process. systems 17, 673–680 (2005)Google Scholar
  8. 8.
    Krestinin, I.A., Seredin, O.S.: Excluding cascading classifier for face detection. In: Proc. of the 19th Int. Conf. on Computer Graphics and Vision, pp. 380–381 (2009)Google Scholar
  9. 9.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proc. Intern. Conf. on Image Processing 2002, pp. 900–903 (2002)Google Scholar
  10. 10.
    Marcel, S., Keomany, J., et al.: Robust-to-illumination face localisation using Active Shape Models and Local Binary Patterns. In: IDIAP-RR, vol. 47 (2006)Google Scholar
  11. 11.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  12. 12.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. of ICCV, pp. 555–562 (1998)Google Scholar
  13. 13.
    Sauquet, T., Rodriguez, Y., Marcel, S.: Multiview face detection. In: IDIAP-RR (2005)Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple. In: Proc. IEEE CVPR 2001 (2001)Google Scholar
  15. 15.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  16. 16.
    Wechsler, H.: Reliable face recognition methods: system design, implementation and evaluation, p. 329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern analysis and Machine intel. 24(1), 34–58 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nikolay Degtyarev
    • 1
  • Oleg Seredin
    • 1
  1. 1.Tula State University 

Personalised recommendations