An Efficient Combination of Texture and Color Information for Watershed Segmentation

  • Cyril Meurie
  • Andrea Cohen
  • Yassine Ruichek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6134)


A new segmentation technique based on a color watershed using an adaptive combination of color and texture information is proposed on this paper. This information is represented by two morphological gradients, a classical color gradient and a texture gradient based on co-occurrence matrices texture features. The two morphological gradients are then mixed using a gradient component fusion strategy and an adaptive technique to choose the weighting coefficients. The segmentation process is finally performed by applying the watershed algorithm. The obtained results are then evaluated with the MSE for several sets of parameters and color spaces.


image segmentation adaptive combination color texture mathematical morphology co-occurrence matrices 


  1. 1.
    Angulo, J.: Morphological texture gradients. Application to colour+texture watershed segmentation. In: Proc. of the 8th International Symposium on Mathematical Morphology, October 2007, pp. 399–410 (2007)Google Scholar
  2. 2.
    Kruizinga, P., Petkov, N.: Nonlinear operator for oriented texture. IEEE Transactions on image processing 8(10), 1395–1407 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Haralick, R.M., Shanmugan, K., Dinstein, I.: Textural features for image classification. IEEE Trans. On Systems, Man, and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  4. 4.
    Zucker, S.W., Terzopoulos, D.: Finding structure in co-occurrence matrices for texture analysis. Computer Graphics and Image Processing 12, 286–308 (1980)CrossRefGoogle Scholar
  5. 5.
    Baraldi, A., Parmiggiani, F.: An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. On Geoscience and Remote Sensing 33(2) (March 1995)Google Scholar
  6. 6.
    Cohen, A., Meurie, C., Ruichek, Y., Marais, J., Flancquart, A.: Quantification of gnss signals accuracy: an image segmentation method for estimating the percentage of sky. In: IEEE International Conference on Vehicular Electronics and Safety (ICVES), November 2009, pp. 40–45 (2009)Google Scholar
  7. 7.
    Meurie, C., Ruichek, Y., Cohen, A., Marais, J.: An hybrid an adaptive segmentation method using color and textural information. In: IS&T/SPIE, Electronic Imaging 2010 - Image Processing: Machine Vision Applications III (January 2010)Google Scholar
  8. 8.
    Meurie, C.: Segmentation of color images by pixels classification and hierarchy of partitions. Ph.D. dissertation, University of Caen Basse-Normandie, Caen, France (October 2005)Google Scholar
  9. 9.
    Lezoray, O., Meurie, C., Elmoataz, A.: A graph approach to color mathematical morphology. In: IEEE Symposium on Signal Processing and Information Technology (ISSPIT), pp. 856–861 (2005)Google Scholar
  10. 10.
    Lezoray, O., Meurie, C., Elmoataz, A.: Graph-based ordering scheme for color image filtering. International Journal of Image and Graphics 8(3), 473–493 (2008)CrossRefGoogle Scholar
  11. 11.
    Aptoula, E., Lefevre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Vandenbroucke, N.: Segmentation d’images par classification de pixels dans des espaces d’attributs colorimétriques adaptés. Ph.D. dissertation, University of Lille 1 (December 2000)Google Scholar
  13. 13.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersions simulations. IEEE Trans. On Pattern Analysis and Machine Intelligence (PAMI) 13(16), 583–598 (1991)CrossRefGoogle Scholar
  14. 14.
    Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. Mathematical morphology and its applications to image and signal processing, 69–76 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cyril Meurie
    • 1
  • Andrea Cohen
    • 1
  • Yassine Ruichek
    • 1
  1. 1.Systems and Transportation LaboratoryUniversity of Technology of Belfort-MontbliardBelfortFrance

Personalised recommendations