Efficient Computation of Causal Behavioural Profiles Using Structural Decomposition

  • Matthias Weidlich
  • Artem Polyvyanyy
  • Jan Mendling
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6128)


Identification of behavioural contradictions is an important aspect of software engineering, in particular for checking the consistency between a business process model used as system specification and a corresponding workflow model used as implementation. In this paper, we propose causal behavioural profiles as the basis for a consistency notion, which capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities. Existing notions of behavioural equivalence, such as bisimulation and trace equivalence, might also be applied as consistency notions. Still, they are exponential in computation. Our novel concept of causal behavioural profiles provides a weaker behavioural consistency notion that can be computed efficiently using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use conceptual modeling in practice? Data Knowl. Eng. 58(3), 358–380 (2006)CrossRefGoogle Scholar
  2. 2.
    Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching and merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE CS, Los Alamitos (2007)Google Scholar
  3. 3.
    Dijkman, R., Dumas, M., García-Bauelos, L., Kääriky, R.: Aligning business process models. In: EDOC. IEEE CS, Los Alamitos (2009)Google Scholar
  4. 4.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Glabbeek, R.: The Linear Time – Brancing Time Spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra. Elsevier, Amsterdam (2001)Google Scholar
  6. 6.
    Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation of Causal Behavioural Profiles using Structural Decomposition. Technical report 10-2010, Hasso Plattner Institute (January 2010),
  7. 7.
    Aalst, W.: The application of Petri nets to workflow management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  8. 8.
    Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 82–97. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE Trans. Software Eng. 30(7), 437–447 (2004)CrossRefGoogle Scholar
  11. 11.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Weidlich, M., Mendling, J., Weske, M.: Computation of behavioural profiles of process models. Technical report 08-2009, Hasso Plattner Institute (June 2009)Google Scholar
  14. 14.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Ardis, M.A., Atlee, J.M. (eds.) FMSP, pp. 7–15. ACM, New York (1998)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)Google Scholar
  16. 16.
    Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of free-choice signal transition graphs. In: WODES, The Institution of Electrical Engineers, pp. 1–6 (1996)Google Scholar
  17. 17.
    McMillan, K.L.: A technique of state space search based on unfolding. Formal Methods in System Design 6(1), 45–65 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Esparza, J., Heljanko, K.: Unfoldings: a partial-order approach to model checking. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  19. 19.
    Weidlich, M., Weske, M., Mendling, J.: Change propagation in process models using behavioural profiles. In: SCC. IEEE CS, Los Alamitos (2009)Google Scholar
  20. 20.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. Technical Report RZ 3745, IBM (2009)Google Scholar
  22. 22.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Kiepuszewski, B., Hofstede, A., Aalst, W.: Fundamentals of control flow in workflows. Acta Inf. 39(3), 143–209 (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)Google Scholar
  25. 25.
    Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Esparza, J., Silva, M.: Circuits, handles, bridges and nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 210–242. Springer, Heidelberg (1991)Google Scholar
  27. 27.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Battista, G.D., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  30. 30.
    Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  32. 32.
    Dongen, B., Jansen-Vullers, M., Verbeek, H., Aalst, W.: Verification of the SAP reference models using EPC reduction, state space analysis, and invariants. Computers in Industry 58(6), 578–601 (2007)CrossRefGoogle Scholar
  33. 33.
    Decker, G., Mendling, J.: Process instantiation. Data Knowl. Eng. 68 (2009)Google Scholar
  34. 34.
    Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)Google Scholar
  35. 35.
    Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence notions for net based systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472. Springer, Heidelberg (1992)Google Scholar
  36. 36.
    de Medeiros, A.K.A., Aalst, W., Weijters, A.: Quantifying process equivalence based on observed behavior. Data Knowl. Eng. 64(1) (2008)Google Scholar
  37. 37.
    Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for concurrent systems. Acta Inf. 37(4/5), 229–327 (2001)zbMATHCrossRefGoogle Scholar
  38. 38.
    Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving refinements of petri nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 1–46. Springer, Heidelberg (1991)Google Scholar
  39. 39.
    Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Inf. Comput. 72(3), 197–238 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Basten, T., Aalst, W.: Inheritance of behavior. JLAP 47(2), 47–145 (2001)zbMATHGoogle Scholar
  41. 41.
    Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles. ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)CrossRefGoogle Scholar
  42. 42.
    Rosenblum, L., Yakovlev, A.: Analyzing Semantics of Concurrent Hardware Specifications. In: ICPP, vol. 3, pp. 211–218 (1989)Google Scholar
  43. 43.
    Dongen, B., Dijkman, R.M., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. 44.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity search of business process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthias Weidlich
    • 1
  • Artem Polyvyanyy
    • 1
  • Jan Mendling
    • 2
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamGermany
  2. 2.Humboldt-Universität zu BerlinGermany

Personalised recommendations