Adaptive Matching Based Kernels for Labelled Graphs

  • Adam Woźnica
  • Alexandros Kalousis
  • Melanie Hilario
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6119)


Several kernels over labelled graphs have been proposed in the literature so far. Most of them are based on the Cross Product (CP) Kernel applied on decompositions of graphs into sub-graphs of specific types. This approach has two main limitations: (i) it is difficult to choose a-priori the appropriate type of sub-graphs for a given problem and (ii) all the sub-graphs of a decomposition participate in the computation of the CP kernel even though many of them might be poorly correlated with the class variable. To tackle these problems we propose a class of graph kernels constructed on the proximity space induced by the graph distances. These graph distances address the aforementioned limitations by learning combinations of different types of graph decompositions and by flexible matching the elements of the decompositions. Experiments performed on a number of graph classification problems demonstrate the effectiveness of the proposed approach.


Label Graph Graph Distance Graph Decomposition Graph Kernel Label Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  2. 2.
    Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1), 49–58 (2003)CrossRefGoogle Scholar
  3. 3.
    Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Proceedings of COLT 16 and the 7th Kernel Workshop (2003)Google Scholar
  4. 4.
    Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: First International Workshop on Mining Graphs, Trees and Sequences (held with ECML/PKDD’03) (2003)Google Scholar
  5. 5.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, Washington, DC (2003)Google Scholar
  6. 6.
    Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P.: Extensions of marginalized graph kernels. In: ICML (2004)Google Scholar
  7. 7.
    Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(1), i47–i56 (2005)CrossRefGoogle Scholar
  8. 8.
    Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics. Neural Networks, 1093–1110 (2005)Google Scholar
  9. 9.
    Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: ICDM (2005)Google Scholar
  10. 10.
    Fröhich, H., Wegner, J., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: ICML (2005)Google Scholar
  11. 11.
    Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: KDD (2004)Google Scholar
  12. 12.
    Menchetti, S., Costa, F., Frasconi, P.: Weighted decomposition kernels. In: ICML (2005)Google Scholar
  13. 13.
    Sherashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: 12th AISTATS (2009)Google Scholar
  14. 14.
    Ben-David, S., Eiron, N., Simon, H.: Limitations of learning via embeddings in euclidean half spaces. Journal of Machine Learning Research 3, 441–461 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Collins, M., Duffy, N.: Convolution kernels for natural language. In: NIPS (2002)Google Scholar
  16. 16.
    Cumby, C., Roth, D.: On Kernel Methods for Relational Learning. In: ICML (2003)Google Scholar
  17. 17.
    Woźnica, A., Kalousis, A., Hilario, M.: Distances and (indefinite) kernels for sets of objects. In: ICDM (2006)Google Scholar
  18. 18.
    Vert, J.P.: The optimal assignment kernel is not positive definite (2008)Google Scholar
  19. 19.
    Lanckriet, G., Cristianini, N., Bartlett, P.L., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research 5 (2004)Google Scholar
  20. 20.
    Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. In: Foundations and Applications. World Scientific Publishing Company, Singapore (2005)Google Scholar
  21. 21.
    Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood component analysis. In: NIPS. MIT Press, Cambridge (2005)Google Scholar
  22. 22.
    Woźnica, A., Kalousis, A., Hilario, M.: Matching based kernels for labeled graphs. In: Mining and Learning with Graphs (MLG 2006), with ECML/PKDD, Berlin, Germany (2006)Google Scholar
  23. 23.
    Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point sets. Acta Informatica 37(10), 765–780 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and distances for structured data. Mach. Learn. 57(3), 205–232 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Woźnica
    • 1
  • Alexandros Kalousis
    • 1
  • Melanie Hilario
    • 1
  1. 1.Computer Science DepartmentUniversity of GenevaCarougeSwitzerland

Personalised recommendations