Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification

  • Philipp Kranen
  • Ralph Krieger
  • Stefan Denker
  • Thomas Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6119)

Abstract

The ever growing presence of data streams led to a large number of proposed algorithms for stream data analysis and especially stream classification over the last years. Anytime algorithms can deliver a result after any point in time and are therefore the natural choice for data streams with varying time allowances between two items. Recently it has been shown that anytime classifiers outperform traditional approaches also on constant streams. Therefore, increasing the anytime classification accuracy yields better performance on both varying and constant data streams. In this paper we propose three novel approaches that improve anytime Bayesian classification by bulk loading hierarchical mixture models. In experimental evaluation against four existing techniques we show that our best approach outperforms all competitors and yields significant improvement over previous results in term of anytime classification accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Niedermeier, R.: On multi-dimensional hilbert indexings. In: 4th Annual International Conference on Computing and Combinatorics COCOON (1998)Google Scholar
  2. 2.
    Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k algorithms on exact and fuzzy data sets. VLDB Journal 18(2), 407–427 (2009)CrossRefGoogle Scholar
  3. 3.
    Bouckaert, R.: Naive Bayes Classifiers that Perform Well with Continuous Variables. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1089–1094. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Chen, J.-Y., Hershey, J., Olsen, P., Yashchin, E.: Accelerated monte carlo for kullback-leibler divergence between gaussian mixture models. In: ICASSP (2008)Google Scholar
  5. 5.
    DeCoste, D.: Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry. In: ICML (2002)Google Scholar
  6. 6.
    Dempster, A.P., Laird, N.M.L., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)MATHMathSciNetGoogle Scholar
  7. 7.
    Goldberger, J., Roweis, S.T.: Hierarchical clustering of a mixture model. In: NIPS (2004)Google Scholar
  8. 8.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)Google Scholar
  9. 9.
    John, G., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: UAI. Morgan Kaufmann, San Francisco (1995)Google Scholar
  10. 10.
    Kranen, P., Assent, I., Baldauf, C., Seidl, T.: Self-adaptive anytime stream clustering. In: Proc. of the 9th IEEE ICDM (2009)Google Scholar
  11. 11.
    Kranen, P., Kensche, D., Kim, S., Zimmermann, N., Müller, E., Quix, C., Li, X., Gries, T., Seidl, T., Jarke, M., Leonhardt, S.: Mobile mining and information management in healthnet scenarios. In: Proc. of the 9th IEEE MDM (2008)Google Scholar
  12. 12.
    Kranen, P., Seidl, T.: Harnessing the strengths of anytime algorithms for constant data streams. DMKD Journal, ECML PKDD Special Issue 2(19) (2009)Google Scholar
  13. 13.
    Lawder, J.: Calculation of mappings between one and n-dimensional values using the hilbert space-filling curves. Technical Report JL1/00  Birkbeck College, University of London (2000)Google Scholar
  14. 14.
    Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: Str: A simple and efficient algorithm for r-tree packing. In: ICDE, pp. 497–506 (1997)Google Scholar
  15. 15.
    Seidl, T., Assent, I., Kranen, P., Krieger, R., Herrmann, J.: Indexing density models for incremental learning and anytime classification on data streams. In: EDBT/ICDT (2009)Google Scholar
  16. 16.
    Ueno, K., Xi, X., Keogh, E.J., Lee, D.-J.: Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: ICDM (2006)Google Scholar
  17. 17.
    Vasconcelos, N., Lippman, A.: Learning mixture hierarchies. In: NIPS (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philipp Kranen
    • 1
  • Ralph Krieger
    • 1
  • Stefan Denker
    • 1
  • Thomas Seidl
    • 1
  1. 1.Data Manangement and Exploration DepartmentRWTH Aachen UniversityGermany

Personalised recommendations