Automatic Breast Tissue Classification Based on BIRADS Categories

  • Noelia Vállez
  • Gloria Bueno
  • Óscar Déniz
  • Pablo Esteve
  • Miguel A. Rienda
  • Carlos Pastor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6136)

Abstract

Breast tissue density is an important risk factor in the detection of breast cancer. It is also known that interpretation of mammogram lesions is more difficult in dense tissues. Therefore, getting a preliminary tissue classification may aid in the subsequent process of breast lesion detection and analysis. This article reviews several classification techniques for two datasets, both digitized screen-film (SFM) and full-field digital (FFDM) mammography, classified according to BIRADS categories. It concludes with a hierarchical classification procedure based on k-NN combined with principal component analysis on texture features. The results obtained classifying 1740 mammograms reflect up to 83% of samples correctly classified. The method is being integrated within a CADe system developed by the authors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bueno, G.: 10. In: Fuzzy Systems and Deformable Models. Series in Medical Physics and Biomedical Engineering, pp. 305–329. Taylor & Francis Group, London (2008); Book-Title: Intelligent and Adaptive Systems in MedicineGoogle Scholar
  2. 2.
    Boyd, N., Dite, G., Stone, J., et al.: Realiability of Mammographic Density, a Risk Factor for Breast Cancer. New England Journal of Med. 347(12), 886–894 (2002)CrossRefGoogle Scholar
  3. 3.
    Ursin, G., Hovanessian-Larsen, L., Parisky, Y.R., et al.: Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Research 7(5), 605–608 (2005)CrossRefGoogle Scholar
  4. 4.
    Bueno, G., Ruiz, M., Sánchez, S.: B-spline filtering for automatic detection of calcification lesions in mammograms. In: Proceedings of the Intern. Conference on Information Optics, WIO 2006, pp. 60–70 (2006)Google Scholar
  5. 5.
    Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37, 2486–2492 (1976)CrossRefGoogle Scholar
  6. 6.
    Oliver, A., Freixenet, J., Martí, R., et al.: A novel breast tissue density classification methodology. IEEE Trans. on Inform. Techn. in Biomed. 12, 55–65 (2008)CrossRefGoogle Scholar
  7. 7.
    Yafee, M., Boyd, N.: Mammographic breast density and cancer risk: The radiological view. Gynecological Endocrinology 21(suppl. 1), 6–11 (2005)CrossRefGoogle Scholar
  8. 8.
    Brem, R., Hoffmeister, J., Rapelyea, J., et al.: Impact of breast density on computer-aided detection for breast cancer. American Journal of Roentgenology 184, 439–444 (2005)Google Scholar
  9. 9.
    Harvey, J.A., Bovbjerg, V.E.: Quantitative Assessment of Mammographic Breast Density: Relationship with Breast Cancer Risk. Radiology 230(1), 29–41 (2004)CrossRefGoogle Scholar
  10. 10.
    Bovis, K., Singh, S.: Classification of mammographic breast density using a combined classifier paradigm. In: 4th Intern. Workshop on Digital Mammography, pp. 177–180 (2002)Google Scholar
  11. 11.
    Oliver, A., Lladó, X., Martí, R., Freixenet, J., Zwiggelaar, R.: Classifying mammograms using texture information. In: Proc. Medical Image Understanding and Analysis, July 2007, pp. 223–227 (2007)Google Scholar
  12. 12.
    Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)CrossRefGoogle Scholar
  13. 13.
    Heijden, F., Duin, R., Ridder, D., Tax, D.: Classification, parameter estimation and state estimation - an engineering approach using Matlab. John Wiley & Sons, Chichester (2004)MATHCrossRefGoogle Scholar
  14. 14.
    Kuncheva, L.I.: Combining Pattern Classifiers. John Wiley & Sons, Inc., Chichester (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: A statistical approach. In: Proc. IEEE Conf. Eng. Med. Biol. Soc., vol. 1, pp. 798–801 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Noelia Vállez
    • 1
  • Gloria Bueno
    • 1
  • Óscar Déniz
    • 1
  • Pablo Esteve
    • 2
  • Miguel A. Rienda
    • 2
  • Carlos Pastor
    • 2
  1. 1.Engineering SchoolUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Hospital General de Ciudad RealSpain

Personalised recommendations