Advertisement

Concepts for Efficient and Reliable Multi-modal Breast Image Reading

  • Horst K. Hahn
  • Markus T. Harz
  • Heike Seyffarth
  • Fabian Zöhrer
  • Tobias Böhler
  • Konstantinos Filippatos
  • Lei Wang
  • André Homeyer
  • Felix Ritter
  • Hendrik Laue
  • Matthias Günther
  • Thorsten Twellmann
  • László K. Tabár
  • Ulrich Bick
  • Kathy J. Schilling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6136)

Abstract

We describe a group of concepts that facilitate reading of multi-modality breast imaging data in a single workplace and discuss their use and limitations. Our concepts comprise intelligent preprocessing, spatial referencing and dedicated workflow tools and aim at homogenizing and simplifying the multi-modality workplace, at improving the standardization across modalities and vendors, at supporting cross-modality information linkage, and at reducing required user interaction and waiting times, all at a high level of flexibility for the user to access the available imaging information at any time required. As a result, many situations where information from multiple modalities and time points must be assessed, both qualitatively and quantitatively, are expected to be handled more efficiently and reliably.

Keywords

multi-modality image display human-computer interaction data fusion image processing image registration computer-aided radiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez, J.K., Bassett, L.W.: Invasive lobular carcinoma of the breast: spectrum of mammographic, US, and MR imaging findings. Radiographics 29(1), 165–176 (2009)CrossRefGoogle Scholar
  2. 2.
    Kuhl, C., Weigel, S., Schrading, S., et al.: Prospective Multicenter Cohort Study to Refine Management Recommendations for Women at Elevated Familial Risk of Breast Cancer: The EVA Trial. J. Clin. Oncology 28(9), 1450–1457 (2010)CrossRefGoogle Scholar
  3. 3.
    Sardanelli, F., Podo, F., D’Agnolo, G., et al.: Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results. Radiology 242(3), 698–715 (2007)CrossRefGoogle Scholar
  4. 4.
    Horsch, K., Giger, M.L., Vyborny, C.J., et al.: Classification of Breast Lesions with Multimodality Computer-aided Diagnosis: Observer Study on an Independent Clinical Data Set. Radiology 240(2), 357–368 (2006)CrossRefGoogle Scholar
  5. 5.
    Zaidi, H., Montandon, M.L.L., Alavi, A.: The clinical role of fusion imaging using PET, CT, and MR imaging. Magn. Reson. Imaging Clin. N. Am. 18(1), 133–149 (2010)CrossRefGoogle Scholar
  6. 6.
    Hahn, H.K., Valer, V., Schlemmer, H.P., et al.: Efficient Whole Body MRI and Multimodal Softcopy Reading by Persistent Workflow Modeling. Proc. RSNA: LL-I 3100 (2006)Google Scholar
  7. 7.
    Baum, K.G., Helguera, M., Krol, A.: Fusion viewer: A new tool for fusion and visualization of multimodal medical data sets. J. Digit Imaging 21(Suppl. 1), S59–S68 (2008)CrossRefGoogle Scholar
  8. 8.
    Reiner, B., Siegel, E., Carrino, J.A.: Workflow Optimization: Current Trends and Future Directions. J. Dig. Imaging 15(3), 141–152 (2002)CrossRefGoogle Scholar
  9. 9.
    Guo, Y., Sivaramakrishna, R., Lu, C.C.C., et al.: Breast image registration techniques: a survey. Med. Biol. Eng. Comput. 44(1-2), 15–26 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, X., Dawant, B.M., Welch, E.B., et al.: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. MRI. 27(9), 1258–1270 (2009)CrossRefGoogle Scholar
  11. 11.
    Collignon, A., Maes, F., Delaere, D., et al.: Automated multi-modality image registration based on information theory. In: Proc. IPMI, pp. 263–274 (1995)Google Scholar
  12. 12.
    Davis, M.H., Khotanzad, A., Flemig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE TMI 16(3), 317–328 (1997)Google Scholar
  13. 13.
    Marti, R., Zwiggelaar, R., Rubin, C., Denton, E.: 2D-3D correspondence in mammography. Cybernetics and Systems 35, 85–105 (2004)Google Scholar
  14. 14.
    Ruiter, N.: Registration of X-ray mammograms and MR-volumes of the female breast based on simulated mammographic deformation. PhD thesis, Univ. Mannheim (2003)Google Scholar
  15. 15.
    Azar, F.S., Lee, K., Khamene, A., et al.: Standardized platform for coregistration of nonconcurrent diffuse optical and magnetic resonance breast images obtained in different geometries. J. Biomed. Opt. 12, 051902 (2007)CrossRefGoogle Scholar
  16. 16.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans Communications 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  17. 17.
    Zijdenbos, A.P., Forghani, R., Evans, A.C.: Automatic Pipeline Analysis of 3-D MRI Data for Clinical Trials: Application to Multiple Sclerosis. IEEE TMI 21(10), 1280–1291 (2002)Google Scholar
  18. 18.
    Madabhushi, A.: Digital Pathology Image Analysis: Opportunities and Challenges. Imaging Med. 1(1), 7–10 (2009)CrossRefGoogle Scholar
  19. 19.
    Petushi, S., Garcia, F.U., Haber, M.M., et al.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6, 14 (2006)CrossRefGoogle Scholar
  20. 20.
    Petushi, S., Zhang, J., Zhu, W., et al.: A visual analytics system for breast tumor evaluation. Anal. Quant. Cytol. Histol 30(5), 279–290 (2008)Google Scholar
  21. 21.
    Zöhrer, F., Harz, M.T., Bödicker, A., et al.: Interactive Multi-Scale Contrast Enhancement of Previously Processed Digital Mammograms. In: Martí, J., et al. (eds.) Proc. IWDM. LNCS, vol. 6136. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Böhler, T., Schilling, K., Bick, U., Hahn, H.K.: Deformable Image Registration of Follow-up Breast Magnetic-resonance Images. In: Proc. WBIR (in print 2010)Google Scholar
  23. 23.
    Irwin, M.R., Downey, D.B., Gardi, L., Fenster, A.: Registered 3-D ultrasound and digital stereotactic mammography for breast biopsy guidance. IEEE TMI 27(3), 391–401 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Horst K. Hahn
    • 1
  • Markus T. Harz
    • 1
  • Heike Seyffarth
    • 2
  • Fabian Zöhrer
    • 1
  • Tobias Böhler
    • 1
  • Konstantinos Filippatos
    • 2
  • Lei Wang
    • 1
  • André Homeyer
    • 1
  • Felix Ritter
    • 1
  • Hendrik Laue
    • 1
  • Matthias Günther
    • 1
  • Thorsten Twellmann
    • 2
  • László K. Tabár
    • 3
  • Ulrich Bick
    • 4
  • Kathy J. Schilling
    • 5
  1. 1.Fraunhofer MEVIS, Institute for Medical Image ComputingUniversitaetsallee 29BremenGermany
  2. 2.MeVis Medical Solutions AGBremenGermany
  3. 3.Department of MammographyFalun Central HospitalSweden
  4. 4.Department of Radiology, CharitéBerlinGermany
  5. 5.Center for Breast CareBoca Raton Community HospitalBoca RatonUSA

Personalised recommendations