Estimate on Expectation for Influence Maximization in Social Networks

  • Yao Zhang
  • Qing Gu
  • Jun Zheng
  • Daoxu Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6118)

Abstract

Finding the most influential nodes is an important issue in social network analysis. To tackle this issue, Kempe et al. proposed the natural greedy strategy, which, although provides a good approximation, suffers from high computation cost on estimating the influence function even if adopting an efficient optimization. In this paper, we propose a simple yet effective evaluation, the expectation, to estimate the influence function. We formulate the expectation of the influence function and its marginal gain first, then give bounds to the expectation of marginal gains. Based on the approximation to the expectation, we put forward a new greedy algorithm called Greedy Estimate-Expectation (GEE), whose advantage over the previous algorithm is to estimate marginal gains via expectation rather than running Monte-Carlo simulation. Experimental results demonstrate that our algorithm can effectively reduce the running time while maintaining the influence spread.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD, pp. 57–66 (2001)Google Scholar
  2. 2.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD, pp. 61–70 (2002)Google Scholar
  3. 3.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the networks: a complex systems look at the underlying process of word-of-mouth. Marketing Letters 12 (2001)Google Scholar
  4. 4.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. TWEB 1(1) (2007)Google Scholar
  5. 5.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)Google Scholar
  6. 6.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.S.: Cost-effective outbreak detection in networks. In: KDD, pp. 420–429 (2007)Google Scholar
  7. 7.
    Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: AAAI, pp. 1371–1376 (2007)Google Scholar
  8. 8.
    Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD, pp. 199–208 (2009)Google Scholar
  10. 10.
    Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yao Zhang
    • 1
  • Qing Gu
    • 1
  • Jun Zheng
    • 1
  • Daoxu Chen
    • 1
  1. 1.State Key Lab. for Novel Software and TechnologyNanjing UniversityNanjingChina

Personalised recommendations