PODD: An Ontology-Driven Data Repository for Collaborative Phenomics Research

  • Yuan-Fang Li
  • Gavin Kennedy
  • Faith Davies
  • Jane Hunter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6102)


Phenomics, the systematic study of phenotypes, is an emerging field of research in biology. It complements genomics, the study of genotypes, and is becoming an increasingly critical tool to understand phenomena such as plant morphology and human diseases. Phenomics studies make use of both high- and low-throughput imaging and measurement devices to capture data, which are subsequently used for analysis. As a result, high volumes of data are generated on a regular basis, making storage, management, annotation and distribution a challenging task. Sufficient contextual information, the metadata, must also be maintained to facilitate the dissemination of these data. The challenge is further complicated by the need to support emerging technologies and processes in phenomics research. This paper describes our effort in designing and developing an ontology-driven, open, extensible data repository to support collaborative phenomics research in Australia.


OWL ontology repository phenomics data management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25(1), 25–29 (2000)CrossRefGoogle Scholar
  2. 2.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The Making of a Web Ontology Language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  3. 3.
    Houle, D.: Numbering the Hairs on Our Heads: The Shared Challenge and Promise of Phenomics. Proceedings of the National Academy of Sciences (October 2009)Google Scholar
  4. 4.
    Jones, A.R., Miller, M., Aebersold, R., et al.: The Functional Genomics Experiment model (FuGE): an Extensible Framework for Standards in Functional Genomics. Nature Biotechnology 25(10), 1127–1133 (2007)CrossRefGoogle Scholar
  5. 5.
    Manola, F., Miller, E. (eds.): RDF Primer (February 2004),
  6. 6.
    McGuinness, D.L.: Configuration. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Handbook, pp. 388–405. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Nevo, E.: Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences 98(11), 6233–6240 (2001)CrossRefGoogle Scholar
  8. 8.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April 2006),
  9. 9.
    Rajasekar, A., Moore, R., Vernon, F.: iRODS: A Distributed Data Management Cyberinfrastructure for Observatories. In: American Geophysical Union, Fall Meeting 2007 (December 2007)Google Scholar
  10. 10.
    Ruttenberg, A., Rees, J., Samwald, M., Marshall, M.S.: Life Sciences on the Semantic Web: the Neurocommons and Beyond. Briefings in Bioinformatics 10(2), 193–204 (2009)CrossRefGoogle Scholar
  11. 11.
    Sauer, U.: High-throughput Phenomics: Experimental Methods for Mapping Fluxomes. Current Opinion in Biotechnology 15(1), 58–63 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration. Nature Biotechnology 25(11), 1251–1255 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuan-Fang Li
    • 1
  • Gavin Kennedy
    • 1
  • Faith Davies
    • 1
  • Jane Hunter
    • 1
  1. 1.School of ITEEThe University of Queensland 

Personalised recommendations