Stateful Mobile Modules for Sensor Networks

  • Moritz Strübe
  • Rüdiger Kapitza
  • Klaus Stengel
  • Michael Daum
  • Falko Dressler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)

Abstract

Most sensor network applications are dominated by the acquisition of sensor values. Due to energy limitations and high energy costs of communication, in-network processing has been proposed as a means to reduce data transfers. As application demands may change over time and nodes run low on energy, get overloaded, or simply face debasing communication capabilities, runtime adaptation is required. In either case, it is useful to be able to migrate computations between neighboring nodes without losing runtime state that might be costly or even impossible to recompute. We propose stateful mobile modules as a basic infrastructure building block to improve adaptiveness and robustness of in-network processing applications. Stateful mobile modules are binary modules linked on the node itself. Even more importantly, they can be transparently migrated from one node to another, thereby keeping statically as well as dynamically allocated memory. This is achieved by an optimized binary format, a memory-efficient linking process and an advanced programming support.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, J.K., Martinez, K.: Environmental sensor networks: A revolution in the earth system science? Earth-Science Reviews 78, 177–191 (2006)CrossRefGoogle Scholar
  2. 2.
    Gehrke, J., Madden, S.: Query Processing in Sensor Networks. IEEE Pervasive Computing 3, 46–55 (2004)CrossRefGoogle Scholar
  3. 3.
    Edara, P., Limaye, A., Ramamritham, K.: Asynchronous in-network prediction: Efficient aggregation in sensor networks. ACM Transactions on Sensor Networks (TOSN) 4, 1–34 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhu, Y., Rundensteiner, E., Heineman, G.: Dynamic Plan Migration for Continuous Queries over Data Streams. In: ACM SIGMOD Conference 2004, Paris, France, pp. 431–442 (2004)Google Scholar
  5. 5.
    Jeong, J., Culler, D.: Incremental Network Programming for Wireless Sensors. In: 1st IEEE International Conference on Sensor and Ad hoc Communications and Networks (IEEE SECON 2004), Santa Clara, CA, USA (2004)Google Scholar
  6. 6.
    Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system for sensor nodes. In: Proceedings of th 3rd ACM International Conference on Mobile Systems, Applications, and Services (ACM MobiSys 2005), Seattle, WA, USA, pp. 163–176 (2005)Google Scholar
  7. 7.
    Dressler, F., Strübe, M., Kapitza, R., Schröder-Preikschat, W.: Dynamic Software Management on BTnode Sensors. In: 4th IEEE/ACM International Conference on Distributed Computing in Sensor Systems (IEEE/ACM DCOSS 2008): IEEE/ACM International Workshop on Sensor Network Engineering (IWSNE 2008), pp. 9–14 (2008)Google Scholar
  8. 8.
    Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogramming wireless sensor networks. In: 4th ACM Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO, pp. 15–28 (2006)Google Scholar
  9. 9.
    Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. ACM SIGOPS Operating Systems Review 36, 85–95 (2002)CrossRefGoogle Scholar
  10. 10.
    Brouwers, N., Langendoen, K., Corke, P.: Darjeeling, a feature-rich vm for the resource poor. In: 7th ACM Conference on Embedded Networked Sensor Systems (SenSys 2009), pp. 169–182. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Felser, M., Kapitza, R., Kleinöder, J., Schröder-Preikschat, W.: Dynamic Software Update of Resource-Constrained Distributed EmbeddedSystems. In: IFIP International Embedded Systems Symposium (IESS 2007), Irvine, CA, USA, vol. 231, pp. 387–400 (2007)Google Scholar
  12. 12.
    Bagci, F., Wolf, J., Ungerer, T., Bagherzadeh, N.: Mobile Agents for Wireless Sensor Networks. In: International Conference on Wireless Networks (ICWN 2009), Las Vegas, NV, USA (2009)Google Scholar
  13. 13.
    Fok, C.L., Roman, G.C., Lu, C.: Rapid development and flexible deployment of adaptive wireless sensor network applications. In: 25th IEEE International Conference on Distributed Computing Systems (ICDCS 2005), Columbus, OH, USA, pp. 653–662 (2005)Google Scholar
  14. 14.
    Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny networked sensors. In: 1st IEEE Workshop on Embedded Networked Sensors (Emnets-I), Tampa, FL (2004)Google Scholar
  15. 15.
    Dressler, F., Kapitza, R., Daum, M., Strübe, M., Schröder-Preikschat, W., German, R., Meyer-Wegener, K.: Query Processing and System-Level Support for Runtime-Adaptive Sensor Networks. In: 16. GI/ITG Fachtagung Kommunikation in Verteilten Systemen (KiVS 2009), Kassel, Germany, pp. 55–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    TIS Committee: Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification (1995)Google Scholar
  17. 17.
    Fuggetta, A., Picco, G., Vigna, G.: Understanding code mobility. IEEE Transactions on Software Engineering 24, 342–361 (1998)CrossRefGoogle Scholar
  18. 18.
    Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying event-driven programming of memory-constrained embedded systems. In: 4th ACM Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO (2006)Google Scholar
  19. 19.
    Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level simulation in cooja. In: European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands (2007)Google Scholar
  20. 20.
    Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: Mspsim – an extensible simulator for msp430-equipped sensor boards. In: European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands (2007)Google Scholar
  21. 21.
    Dunkels, A.: Rime — a lightweight layered communication stack for sensor networks. In: European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The Netherlands (2007)Google Scholar
  22. 22.
    Tsiftes, N., Dunkels, A., He, Z., Voigt, T.: Enabling Large-Scale Storage in Sensor Networks with the Coffee File System. In: 8th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2009), San Francisco, USA (2009)Google Scholar
  23. 23.
    Koshy, J., Pandey, R.: Vmstar: synthesizing scalable runtime environments for sensor networks. In: 3rd International Conference on Embedded Networked Sensor Systems (SenSys 2005), San Diego, CA, USA, pp. 243–254 (2005)Google Scholar
  24. 24.
    Dong, W., Chen, C., Lie, X., Bu, J., Liu, Y.: Dynamic Linking and Loading in Networked Embedded Systems. In: 6th IEEE International Conference on Mobile Ad Hoc and Sensor Systems 2009 (MASS 2009), Macau SAR (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Moritz Strübe
    • 1
  • Rüdiger Kapitza
    • 1
  • Klaus Stengel
    • 1
  • Michael Daum
    • 1
  • Falko Dressler
    • 1
  1. 1.Dept. of Computer ScienceFriedrich-Alexander University Erlangen-NurembergGermany

Personalised recommendations