Advertisement

Self-stabilizing Synchronization in Mobile Sensor Networks with Covering

  • Joffroy Beauquier
  • Janna Burman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6131)

Abstract

Synchronization is widely considered as an important service in distributed systems which may simplify protocol design. Phase clock is a general synchronization tool that provides a form of a logical time. This paper presents a self-stabilizing (a tolerating state-corrupting transient faults) phase clock algorithm suited to the model of population protocols with covering. This model has been proposed recently for sensor networks with a very large, possibly unknown number of anonymous mobile agents having small memory. Agents interact in pairs in an asynchronous way subject to the constraints expressed in terms of the cover times of agents. The cover time expresses the “frequency” of an agent to communicate with all the others and abstracts agent’s communication characteristics (e.g. moving speed/patterns, transmitting/receiving capabilities). We show that a phase clock is impossible in the model with only constant-state agents. Hence, we assume an existence of resource-unlimited agent - the base station.

The clock size and duration of each phase of the proposed phase clock tool are adjustable by the user. We provide application examples of this tool and demonstrate how it can simplify the design of protocols. In particular, it yields a solution to Group Mutual Exclusion problem.

Keywords

population protocols self-stabilization cover time synchronization phase clock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)Google Scholar
  2. 2.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. DC 21(3), 183–199 (2008)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. DC 20(4), 279–304 (2007)Google Scholar
  4. 4.
    Awerbuch, B.: Complexity of network synchronization. Journal of the Association of the Computing Machinery 32(4), 804–823 (1985)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-optimal self-stabilizing synchronizer using a phase clock. IEEE TDSC 4(3), 180–190 (2007)Google Scholar
  6. 6.
    Beauquier, J., Burman, J., Clement, J., Kutten, S.: Brief announcement: Non-self-stabilizing and self-stabilizing gathering in networks of mobile agents - the notion of speed. In: PODC, pp. 286–287 (2009)Google Scholar
  7. 7.
    Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. To appear in PODC 2010 (2010)Google Scholar
  8. 8.
    Beauquier, J., Burman, J., Kutten, S.: Making population protocols self-stabilizing. In: SSS, pp. 90–104 (2009)Google Scholar
  9. 9.
    Beauquier, J., Burman, J., Kutten, S.: A self-stabilizing transformer for population protocols with covering. Technical report, Technion (2010), http://tx.technion.ac.il/~bjanna/main_ss-transformer_els.pdf
  10. 10.
    Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing counting in mobile sensor networks with a base station. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 63–76. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC, pp. 150–159 (2004)Google Scholar
  12. 12.
    Cantarell, S., Petit, F.: Self-stabilizing group mutual exclusion for asynchronous rings. In: OPODIS, pp. 71–90 (2000)Google Scholar
  13. 13.
    Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Trans. Program. Lang. Syst. 6(4), 632–646 (1984)CrossRefGoogle Scholar
  14. 14.
    Couvreur, J.-M., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract). In: ICDCS, pp. 486–493 (1992)Google Scholar
  15. 15.
    Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)CrossRefGoogle Scholar
  16. 16.
    Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta. Inf. 1, 115–138 (1971)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Guerraoui, R., Ruppert, E.: Even small birds are unique: Population protocols with identifiers. Technical Report CSE-2007-04. York University (2007)Google Scholar
  19. 19.
    Herman, T.: Phase clocks for transient fault repair. IEEE Trans. Parallel Distrib. Syst. 11(10), 1048–1057 (2000)CrossRefGoogle Scholar
  20. 20.
    Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Process. Lett. 54(5), 259–265 (1995)zbMATHCrossRefGoogle Scholar
  21. 21.
    Jiang, J.-R.: A group mutual exclusion algorithm for ad hoc mobile networks. In: JCIS, pp. 266–270 (2002)Google Scholar
  22. 22.
    Joung, Y.-J.: Asynchronous group mutual exclusion. Distributed Computing 13(4), 189–206 (2000)CrossRefGoogle Scholar
  23. 23.
    Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In: ASPLOS, pp. 96–107 (2002)Google Scholar
  24. 24.
    Lahde, S., Doering, M., Pöttner, W., Lammert, G., Wolf, L.C.: A practical analysis of communication characteristics for mobile and distributed pollution measurements on the road. Wirel. Comm. and Mob. Comput. 7(10), 1209–1218 (2007)CrossRefGoogle Scholar
  25. 25.
    Lundquist, J.D., Cayan, D.R., Dettinger, M.D.: Meteorology and hydrology in Yosemite National Park: A sensor network application. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 518–528. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Massey, H., Bedford, L.H.: The role of satellites in observing and forecasting the global behaviour of the atmosphere: Discussion. Royal Society of London Proceedings Series A 308, 172 (1969)Google Scholar
  27. 27.
    Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joffroy Beauquier
    • 1
  • Janna Burman
    • 2
  1. 1.University Paris Sud, LRI, UMR 8623Orsay
  2. 2.Dept. of Industrial Engineering & ManagementTechnionHaifaIsrael

Personalised recommendations