Advertisement

Termite Gut Flagellates and Their Methanogenic and Eubacterial Symbionts

  • Yuichi HongohEmail author
  • Moriya Ohkuma
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 19)

Abstract

Termites harbor an abundance and diversity of symbiotic microbes in their gut that comprise all the three domains of life: Eucarya, Bacteria, and Archaea. One of the most prominent features of this microbiota is the cellular association of the gut flagellates with eubacteria and/or methanogenic archaea. The eubacterial and methanogenic symbionts are observed both inside and on the surface of the host flagellate cells. Although molecular approaches have gradually revealed the phylogenetic and spatial structures of these as-yet-uncultivable symbiotic complexes, their functions remain largely unknown. Recently, a method to acquire the complete genome sequence of uncultured bacterial species from a small number of cells has been developed; two complete genome sequences of endosymbiotic eubacteria of termite gut flagellates have been decoded. This novel genomic approach is expected to provide a great progress in the studies of this multilayered symbiotic system in termite gut.

Keywords

Whole Genome Amplification Methanogenic Archaea Termite Species High Termite Lower Termite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andrew BJ (1930) Method and rate of protozoan refaunation in the termite Termopsis angusticollis Hagen. Univ Calif Publ Zool 33:449–470Google Scholar
  2. Berchtold M, Ludwig W, König H (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123:269–273PubMedCrossRefGoogle Scholar
  3. Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416PubMedCrossRefGoogle Scholar
  4. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387PubMedCrossRefGoogle Scholar
  5. Brauman A, Dore J, Eggleton P, Bignell DE, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36PubMedCrossRefGoogle Scholar
  6. Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, The Netherlands, pp 209–232Google Scholar
  7. Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedGoogle Scholar
  8. Brune A (2010) Methanogens in the digestive tract of termites. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  9. Brune A, Stingl U (2006) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. Prog Mol Subcell Biol 41:39–60PubMedCrossRefGoogle Scholar
  10. Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428PubMedCrossRefGoogle Scholar
  11. Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond B 159:668–686CrossRefGoogle Scholar
  12. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266PubMedCrossRefGoogle Scholar
  13. Deevong P, Hattori M, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2004) Isolation and detection of methanogens from the gut of higher termites. Microbes Environ 19:221–226CrossRefGoogle Scholar
  14. Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, Brune A (2010) Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol. doi: 10.1111/j.1462-2920.2009.02080.x
  15. Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedCrossRefGoogle Scholar
  16. Dröge S, Rachel R, Radek R, König H (2008) Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int J Syst Evol Microbiol 58:1079–1083PubMedCrossRefGoogle Scholar
  17. Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedGoogle Scholar
  18. Eldridge ML, Goss S, Gunderson J (1997) Identification of a prokaryotic symbiont of the termite flagellate Trichonympha. The 97th Annual Meeting of the American Society for Microbiology. Miami Beach, USA, p N-037Google Scholar
  19. Eutick ML, Veivers PC, O'Brien RW, Slaytor M (1978) Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. J Insect Physiol 24:363–368CrossRefGoogle Scholar
  20. Fenchel T, Finlay BJ (2010) Free-living protozoa with endosymbiotic methanogens. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  21. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890PubMedCrossRefGoogle Scholar
  22. Geissinger O, Herlemann DP, Morschel E, Maier UG, Brune A (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol 75:2831–2840PubMedCrossRefGoogle Scholar
  23. Graber JR, Breznak JA (2004) Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70:1307–1314PubMedCrossRefGoogle Scholar
  24. Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320PubMedCrossRefGoogle Scholar
  25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  26. Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127CrossRefGoogle Scholar
  27. Herlemann DP, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A (2009) Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia” (formerly Termite Group 1). Appl Environ Microbiol 75:2841–2849PubMedCrossRefGoogle Scholar
  28. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242PubMedCrossRefGoogle Scholar
  29. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedCrossRefGoogle Scholar
  30. Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T (2006a) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516PubMedCrossRefGoogle Scholar
  31. Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M (2006b) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788PubMedCrossRefGoogle Scholar
  32. Hongoh Y, Sato T, Dolan MF, Noda S, Ui S, Kudo T, Ohkuma M (2007a) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276PubMedCrossRefGoogle Scholar
  33. Hongoh Y, Sato T, Noda S, Ui S, Kudo T, Ohkuma M (2007b) Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol 9:2631–2635PubMedCrossRefGoogle Scholar
  34. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008a) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560PubMedCrossRefGoogle Scholar
  35. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008b) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109PubMedCrossRefGoogle Scholar
  36. Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26PubMedCrossRefGoogle Scholar
  37. Ikeda-Ohtsubo W, Brune A (2009) Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol 18:332–342PubMedCrossRefGoogle Scholar
  38. Ikeda-Ohtsubo W, Desai M, Stingl U, Brune A (2007) Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153:3458–3465PubMedCrossRefGoogle Scholar
  39. Inoue J, Saita K, Kudo T, Ui S, Ohkuma M (2007) Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932PubMedCrossRefGoogle Scholar
  40. Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microbes Environ 23:94–97PubMedCrossRefGoogle Scholar
  41. Jenkins TM, Dean RE, Verkerk R, Forschler BT (2001) Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol Phylogenet Evol 20:286–293PubMedCrossRefGoogle Scholar
  42. Kirby H (1930) Trichomonad flagellates from termites. Univ Calif Publ Zool 33:393–444Google Scholar
  43. Kitade O (2004) Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ 19:215–220CrossRefGoogle Scholar
  44. Kitade O, Matsumoto T (1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera). Symbiosis 25:271–278Google Scholar
  45. Kitade O, Maeyama T, Matsumoto T (1997) Establishment of symbiotic flagellate fauna of Hodotermopsis japonica (Isoptera: Termopsidae). Sociobiology 30:161–167Google Scholar
  46. Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfur-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149CrossRefGoogle Scholar
  47. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  48. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292PubMedCrossRefGoogle Scholar
  49. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  50. Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Eukaryot Microbiol 51:291–300PubMedCrossRefGoogle Scholar
  51. Lee MJ, Schreurs PJ, Messer AC, Zinder SH (1987) Association of methanogenic bacteria with flagellated protozoa from a termite gut. Curr Microbiol 15:337–341CrossRefGoogle Scholar
  52. Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedCrossRefGoogle Scholar
  53. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedCrossRefGoogle Scholar
  54. Messer AC, Lee MJ (1989) Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb Ecol 18:275–284CrossRefGoogle Scholar
  55. Nakajima H, Hongoh Y, Usami R, Kudo T, Ohkuma M (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54:247–255PubMedCrossRefGoogle Scholar
  56. Noda S, Ohkuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633PubMedCrossRefGoogle Scholar
  57. Noda S, Iida T, Kitade O, Nakajima H, Kudo T, Ohkuma M (2005) Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite Coptotermes formosanus. Appl Environ Microbiol 71:8811–8817PubMedCrossRefGoogle Scholar
  58. Noda S, Kawai M, Nakajima H, Kudo T, Ohkuma M (2006a) Identification and in situ detection of two lineages of Bacteroidales ectosymbionts associated with a termite gut protist, Oxymonas sp. Microbes Environ 21:16–22CrossRefGoogle Scholar
  59. Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA, Vongkaluang C, Kudo T, Ohkuma M (2006b) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20PubMedCrossRefGoogle Scholar
  60. Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J-H, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266PubMedCrossRefGoogle Scholar
  61. Noda S, Hongoh Y, Sato T, Ohkuma M (2009) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:e158CrossRefGoogle Scholar
  62. Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613PubMedGoogle Scholar
  63. Odelson DA, Breznak JA (1985a) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621PubMedGoogle Scholar
  64. Odelson DA, Breznak JA (1985b) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626PubMedGoogle Scholar
  65. Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352PubMedCrossRefGoogle Scholar
  66. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedGoogle Scholar
  67. Ohkuma M, Ohtoko K, Grunau C, Moriya S, Kudo T (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45:439–444PubMedCrossRefGoogle Scholar
  68. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153PubMedCrossRefGoogle Scholar
  69. Ohkuma M, Noda S, Iida T, Kudo T (2001) Phylogenetic identification of endosymbionts of the flagellated protists in the gut of termites. The 9th International Symposium on Microbial Ecology (ISME-9). Amsterdam, The Netherlands, p 280Google Scholar
  70. Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y (2007) The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476PubMedCrossRefGoogle Scholar
  71. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467PubMedCrossRefGoogle Scholar
  72. Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270PubMedCrossRefGoogle Scholar
  73. Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565PubMedCrossRefGoogle Scholar
  74. Pester M, Tholen A, Friedrich MW, Brune A (2007) Methane oxidation in termite hindguts: absence of evidence and evidence of absence. Appl Environ Microbiol 73:2024–2028PubMedCrossRefGoogle Scholar
  75. Radek R (1999) Flagellates, bacteria, and fungi associated with termites: diversity and function in nutrition – a review. Ecotropica 5:183–196Google Scholar
  76. Radek R, Tischendorf G (1999) Bacterial adhesion to different termite flagellates: ultrastructural and functional evidence for distinct molecular attachment modes. Protoplasma 207:43–53CrossRefGoogle Scholar
  77. Radek R, Roesel J, Hausmann K (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193:105–122CrossRefGoogle Scholar
  78. Salmassi TM, Leadbetter JR (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537PubMedCrossRefGoogle Scholar
  79. Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015PubMedCrossRefGoogle Scholar
  80. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840PubMedGoogle Scholar
  81. Stingl U, Maass A, Radek R, Brune A (2004) Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology 150:2229–2235PubMedCrossRefGoogle Scholar
  82. Stingl U, Radek R, Yang H, Brune A (2005) “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479PubMedCrossRefGoogle Scholar
  83. Sugimoto A, Inoue T, Tayasu I, Miller LR, Takeichi S, Abe T (1998) Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257CrossRefGoogle Scholar
  84. Sugimoto A, Bignell DE, Macdonald J (2000) Global impact of termites on the carbon cycle. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, Ecology. Kluwer Academic Publishers, The Netherlands, pp 409–436Google Scholar
  85. Tamm SL (1980) The ultrastructure of prokaryotic–eukaryotic cell junctions. J Cell Sci 44:335–352PubMedGoogle Scholar
  86. Tamm SL (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J Cell Biol 94:697–709PubMedCrossRefGoogle Scholar
  87. Tholen A, Brune A (2000) Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449PubMedCrossRefGoogle Scholar
  88. Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240PubMedCrossRefGoogle Scholar
  89. Tsunoda K, Ohmura W, Yoshimura T (1993) Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) (II) Presence of methanogenic bacteria and effect of food on methane emission rates. Jpn J Environ Entomol Zool 5:166–174Google Scholar
  90. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang XN, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  91. Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23CrossRefGoogle Scholar
  92. Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, HeidelbergGoogle Scholar
  93. Yamin MA (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J Protozool 25:535–538Google Scholar
  94. Yamin MA (1979) Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi and Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4:1–120Google Scholar
  95. Yamin MA (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863PubMedGoogle Scholar
  96. Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59PubMedCrossRefGoogle Scholar
  97. Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932PubMedCrossRefGoogle Scholar
  98. Yoshimura T (1995) Contribution of the protozoan fauna to nutritional physiology of the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 82:68–129Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyTokyoJapan
  2. 2.Japan Collection of Microorganisms (JCM)RIKEN BioResource CenterWakoJapan

Personalised recommendations