Advertisement

Abstract

This paper proposes a software random testing scheme based on Markov chain Monte Carlo (MCMC) method. The significant issue of software testing is how to use the prior knowledge of experienced testers and the information obtained from the preceding test outcomes in making test cases. The concept of Markov chain Monte Carlo random testing (MCMCRT) is based on the Bayes approach to parametric models for software testing, and can utilize the prior knowledge and the information on preceding test outcomes for their parameter estimation. In numerical experiments, we examine effectiveness of MCMCRT with ordinary random testing and adaptive random testing.

Keywords

Software testing Random testing Bayes statistics Markov chain Monte Carlo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks, S.P.: Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society, Series D (The Statistician) 47(1), 69–100 (1998)CrossRefGoogle Scholar
  2. 2.
    Chan, K.P., Chen, T.Y., Mak, I.K., Yu, Y.T.: Proportional sampling strategy: guidelines for software testing practitioners. Information and Software Technology 38(12), 775–782 (1996)CrossRefGoogle Scholar
  3. 3.
    Chan, K.P., Chen, T.Y., Towey, D.: Normalized restricted random testing. In: Rosen, J.-P., Strohmeier, A. (eds.) Ada-Europe 2003. LNCS, vol. 2655, pp. 368–381. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, T.Y., Huang, D.H., Tse, T.H., Yang, Z.: An innovative approach to tackling the boundary effect in adaptive random testing. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences, p. 262a (2007)Google Scholar
  5. 5.
    Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 320–329. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Chen, T.Y., Merkel, R.G.: Quasi-random testing. IEEE Transactions on Reliability 56(3), 562–568 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, T.Y., Tse, T.H., Yu, Y.T.: Proportional sampling strategy: a compendium and some insights. Journal of Systems and Software 58(1), 65–81 (2001)CrossRefGoogle Scholar
  8. 8.
    Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. The American Statistician 49(4), 327–335 (1995)CrossRefGoogle Scholar
  9. 9.
    Ferguson, R., Korel, B.: The chaining approach for software test data generation. ACM Transactions on Software Engineering and Methodology 5(1), 63–86 (1996)CrossRefGoogle Scholar
  10. 10.
    Korel, B.: Automated software test data generation. IEEE Transactions on Software Engineering 16(8), 870–879 (1990)CrossRefGoogle Scholar
  11. 11.
    Korel, B.: Dynamic method for software test data generation. Journal of Software Testing, Verification and Reliability 2(4), 203–213 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bo Zhou
    • 1
  • Hiroyuki Okamura
    • 1
  • Tadashi Dohi
    • 1
  1. 1.Department of Information Engineering, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations