Two-Layer Planarization Parameterized by Feedback Edge Set

  • Johannes Uhlmann
  • Mathias Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

Given an undirected graph G and an integer k ≥ 0, the NP-hard 2-Layer Planarization problem asks whether G can be transformed into a forest of caterpillar trees by removing at most k edges. Since transforming G into a forest of caterpillar trees requires breaking every cycle, the size f of a minimum feedback edge set is a natural parameter with f ≤ k. We improve on previous fixed-parameter tractability results with respect to k by presenting a problem kernel with O(f) vertices and edges and a new search-tree based algorithm, both with about the same worst-case bounds for f as the previous results for k, although we expect f to be smaller than k for a wide range of input instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., Ravichandran, R., Whitton, K.: Fabricatable interconnect and molecular QCA circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 26(11), 1978–1991 (2007)CrossRefGoogle Scholar
  3. 3.
    Dom, M., Guo, J., Niedermeier, R.: Approximation and fixed-parameter algorithms for consecutive ones submatrix problems. Journal of Computer and System Sciences (2010)Google Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Dujmović, V., Fellows, M., Hallett, M., Kitching, M., McCartin, G.L.C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to 2-layer planarization. Algorithmica 45(2), 159–182 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dujmović, V., Fellows, M., Hallett, M., Kitching, M., McCartin, G.L.C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eades, P., Whitesides, S.: Drawing graphs in two layers. Theoretical Computer Science 131(2), 361–374 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fernau, H.: Two-layer planarization: Improving on parameterized algorithmics. Journal of Graph Algorithms and Applications 9(2), 205–238 (2005)MATHMathSciNetGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: Distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  12. 12.
    Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley & Sons, Inc., New York (1990)MATHGoogle Scholar
  13. 13.
    Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM Journal on Optimization 11(4), 1065–1080 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  15. 15.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vrto, I.: On bipartite drawings and the linear arrangement problem. SIAM Journal on Computing 30(6), 1773–1789 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Suderman, M.: Layered Graph Drawing. PhD thesis, School of Computer Science, McGill University Montréal (2005)Google Scholar
  17. 17.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Tsiaras, V., Triantafilou, S., Tollis, I.G.: DAGmaps: Space filling visualization of directed acyclic graphs. Journal of Graph Algorithms and Applications 13(3), 319–347 (2009)MATHMathSciNetGoogle Scholar
  19. 19.
    Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of Mathematical Biology 48(2), 189–195 (1986)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johannes Uhlmann
    • 1
  • Mathias Weller
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations