Two-Layer Planarization Parameterized by Feedback Edge Set
Conference paper
Abstract
Given an undirected graph G and an integer k ≥ 0, the NP-hard 2-Layer Planarization problem asks whether G can be transformed into a forest of caterpillar trees by removing at most k edges. Since transforming G into a forest of caterpillar trees requires breaking every cycle, the size f of a minimum feedback edge set is a natural parameter with f ≤ k. We improve on previous fixed-parameter tractability results with respect to k by presenting a problem kernel with O(f) vertices and edges and a new search-tree based algorithm, both with about the same worst-case bounds for f as the previous results for k, although we expect f to be smaller than k for a wide range of input instances.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)Google Scholar
- 2.Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., Ravichandran, R., Whitton, K.: Fabricatable interconnect and molecular QCA circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 26(11), 1978–1991 (2007)CrossRefGoogle Scholar
- 3.Dom, M., Guo, J., Niedermeier, R.: Approximation and fixed-parameter algorithms for consecutive ones submatrix problems. Journal of Computer and System Sciences (2010)Google Scholar
- 4.Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
- 5.Dujmović, V., Fellows, M., Hallett, M., Kitching, M., McCartin, G.L.C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to 2-layer planarization. Algorithmica 45(2), 159–182 (2006)MATHCrossRefMathSciNetGoogle Scholar
- 6.Dujmović, V., Fellows, M., Hallett, M., Kitching, M., McCartin, G.L.C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008)MATHCrossRefMathSciNetGoogle Scholar
- 7.Eades, P., Whitesides, S.: Drawing graphs in two layers. Theoretical Computer Science 131(2), 361–374 (1994)MATHCrossRefMathSciNetGoogle Scholar
- 8.Fernau, H.: Two-layer planarization: Improving on parameterized algorithmics. Journal of Graph Algorithms and Applications 9(2), 205–238 (2005)MATHMathSciNetGoogle Scholar
- 9.Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
- 10.Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: Distance from triviality. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)Google Scholar
- 11.Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
- 12.Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley & Sons, Inc., New York (1990)MATHGoogle Scholar
- 13.Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM Journal on Optimization 11(4), 1065–1080 (2001)MATHCrossRefMathSciNetGoogle Scholar
- 14.Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)MATHGoogle Scholar
- 15.Shahrokhi, F., Sýkora, O., Székely, L.A., Vrto, I.: On bipartite drawings and the linear arrangement problem. SIAM Journal on Computing 30(6), 1773–1789 (2001)MATHCrossRefMathSciNetGoogle Scholar
- 16.Suderman, M.: Layered Graph Drawing. PhD thesis, School of Computer Science, McGill University Montréal (2005)Google Scholar
- 17.Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
- 18.Tsiaras, V., Triantafilou, S., Tollis, I.G.: DAGmaps: Space filling visualization of directed acyclic graphs. Journal of Graph Algorithms and Applications 13(3), 319–347 (2009)MATHMathSciNetGoogle Scholar
- 19.Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of Mathematical Biology 48(2), 189–195 (1986)MATHMathSciNetGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2010