Maximum Independent Set in Graphs of Average Degree at Most Three in \({\mathcal O}(1.08537^n)\)

  • Nicolas Bourgeois
  • Bruno Escoffier
  • Vangelis Th. Paschos
  • Johan M. M. van Rooij
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)


We show that Maximum Independent Set on connected graphs of average degree at most three can be solved in \({\mathcal O}(1.08537^n)\) time and linear space. This improves previous results on graphs of maximum degree three, as our connectivity requirement only functions to ensure that each connected component has average degree at most three.

We link this result to exact algorithms of Maximum Independent Set on general graphs. Also, we obtain a faster parameterised algorithm for Vertex Cover restricted to graphs of maximum degree three running in time \({\mathcal O}^*(1.1781^k)\).


Maximum Degree Average Degree Vertex Cover General Graph Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 856–857 (1999)Google Scholar
  2. 2.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: An \(\mbox{O}^*(1.0977^{n}\)) exact algorithm for max independent set in sparse graphs. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 55–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: A bottom-up method and fast algorithms for max independent set. In: Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2010 (to appear, 2010)Google Scholar
  4. 4.
    Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: Fast algorithms for max independent set in graphs of small average degree.; arXiv:0901.1563v1 [cs.DM] (2009)Google Scholar
  5. 5.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. Journal of Algorithms 41(2), 280–301 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: Improved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs. Networks 35(4), 253–259 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)Google Scholar
  9. 9.
    Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Information Processing Letters 97, 191–196 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fürer, M.: A faster algorithm for finding maximum independent sets in sparse graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 491–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 927–928 (1999)Google Scholar
  13. 13.
    Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009. LIPIcs, vol. 4, pp. 287–298. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar
  14. 14.
    Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for max-2-sat. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 11–17. ACM Press, New York (2006)CrossRefGoogle Scholar
  15. 15.
    Razgon, I.: A faster solving of the maximum independent set problem for graphs with maximal degree 3. In: Algorithms and Complexity in Durham 2006 - Proceedings of the Second ACiD Workshop. Texts in Algorithmics, vol. 7, pp. 131–142. King’s College, London (2006)Google Scholar
  16. 16.
    Razgon, I.: Faster computation of maximum independent set and parameterized vertex cover for graphs with maximum degree 3. Journal of Discrete Algorithms 7(2), 191–212 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Robson, J.M.: Finding a maximum independent set in time \(\mbox{O}(2^{n/4})\). Technical report, LaBRI, Université Bordeaux I (2001)Google Scholar
  18. 18.
    Tarjan, R.E., Trojanowski, A.: Finding a maximum independent set. SIAM Journal on Computing 6, 537–546 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Xiao, M.: New branching rules: Improvements on independent set and vertex cover in sparse graphs.; arXiv:0904.2712v1 [cs.DS] (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nicolas Bourgeois
    • 1
  • Bruno Escoffier
    • 1
  • Vangelis Th. Paschos
    • 1
  • Johan M. M. van Rooij
    • 2
  1. 1.LAMSADECNRS FRE 3234 and Université Paris-DauphineFrance
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations