A Note on the Testability of Ramsey’s Class

  • Charles Jordan
  • Thomas Zeugmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)


In property testing, the goal is to distinguish between objects that satisfy some desirable property and objects that are far from satisfying it, after examining only a small, random sample of the object in question. Although much of the literature has focused on properties of graphs, very recently several strong results on hypergraphs have appeared. We revisit a logical result obtained by Alon et al. [1] in the light of these recent results. The main result is the testability of all properties (of relational structures) expressible in sentences of Ramsey’s class.


property testing logic Ramsey’s class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs. Combinatorica 20(4), 451–476 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alon, N., Shapira, A.: A separation theorem in property testing. Combinatorica 28(3), 261–281 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Austin, T., Tao, T.: On the testability and repair of hereditary hypergraph properties. as arXiv:0801.2179v2 (2009) (preprint)Google Scholar
  5. 5.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  6. 6.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, London (2000)Google Scholar
  7. 7.
    Fischer, E.: Testing graphs for colorability properties. In: Proceedings, 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 873–882 (2001)Google Scholar
  8. 8.
    Fischer, E.: Testing graphs for colorability properties. Random Struct. Algorithms 26(3), 289–309 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jordan, C., Zeugmann, T.: Relational properties expressible with one universal quantifier are testable. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 141–155. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Kolaitis, P., Vardi, M.: The decision problem for the probabilities of higher-order properties. In: STOC 1987: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 425–435. ACM, New York (1987)Google Scholar
  11. 11.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30(2), 264–286 (1930)CrossRefGoogle Scholar
  13. 13.
    Rödl, V., Schacht, M.: Property testing in hypergraphs and the removal lemma. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 488–495. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Charles Jordan
    • 1
  • Thomas Zeugmann
    • 1
  1. 1.Division of Computer ScienceHokkaido UniversitySapporoJapan

Personalised recommendations