Incremental List Coloring of Graphs, Parameterized by Conservation

  • Sepp Hartung
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

Incrementally k-list coloring a graph means that a graph is given by adding stepwise one vertex after another, and for each intermediate step we ask for a vertex coloring such that each vertex has one of the colors specified by its associated list containing some of in total k colors. We introduce the “conservative version” of this problem by adding a further parameter c ∈ ℕ specifying the maximum number of vertices to be recolored between two subsequent graphs (differing by one vertex). This “conservation parameter” c models the natural quest for a modest evolution of the coloring in the course of the incremental process instead of performing radical changes. We show that the problem is NP-hard for k ≥ 3 and W[1]-hard when parameterized by c. In contrast, the problem becomes fixed-parameter tractable with respect to the combined parameter (k,c). We prove that the problem has an exponential-size kernel with respect to (k,c) and there is no polynomial-size kernel unless NP ⊆ coNP/poly. Finally, we provide empirical findings for the practical relevance of our approach in terms of an effective graph coloring heuristic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall, Boca Raton (2008)Google Scholar
  2. 2.
    Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels. Technical report, UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)Google Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. DIMACS Series in Discrete Math. and Theor. Comput. Sci., pp. 245–284 (1996)Google Scholar
  6. 6.
    DIMACS. Graph coloring and its generalizations (2002), http://mat.gsia.cmu.edu/COLOR02 (Accessed, December 2009)
  7. 7.
    DIMACS. Maximum clique, graph coloring, and satisfiability. Second DIMACS implementation challenge (1995), http://dimacs.rutgers.edu/Challenges/ (Accessed December 2009)
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 366–377. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009a)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fellows, M.R., Rosamond, F.A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Local search: Is brute-force avoidable? In: Proc. 21st IJCAI, pp. 486–491 (2009b)Google Scholar
  12. 12.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Kratochvíl, J.: Precoloring extension with fixed color bound. Acta Math. Uni. Comenianae 62(2), 139–153 (1993)MATHGoogle Scholar
  15. 15.
    Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett. 36(1), 31–36 (2008)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Shachnai, H., Tamir, G., Tamir, T.: Minimal cost reconfiguration of data placement in storage area network. In: Bampis, P. E. (ed.) WAOA 2009. LNCS, vol. 5893, pp. 229–241. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sepp Hartung
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations