Advertisement

Kernel and Fast Algorithm for Dense Triplet Inconsistency

  • Sylvain Guillemot
  • Matthias Mnich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

We study the parameterized complexity of inferring supertrees from sets of rooted triplets, an important problem in phylogenetics. For a set L of labels and a dense set \(\mathcal R\) of triplets distinctly leaf-labeled by 3-subsets of L we seek a tree distinctly leaf-labeled by L and containing all but at most p triplets from \(\mathcal R\) as homeomorphic subtree. Our results are the first polynomial kernel for this problem, with O(p 2) labels, and a subexponential fixed-parameter algorithm running in time \(2^{O(p^{1/3} \log p)} + O(n^4)\).

Keywords

Binary Tree Polynomial Kernel Reduction Rule Proper Coloring Random Coloring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions. SIAM Journal on Computing 10(3), 405–421 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. Journal of the ACM 55(5) (2008)Google Scholar
  3. 3.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Alon, N., Yuster, R., Zwick, U.: Color-Coding. Journal of the ACM 42(4), 844–856 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bandelt, H.-J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics 7, 309–343 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. Journal of Discrete Algorithms 5(3), 564–591 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bessy, S., Fomin, F., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for Feedback Arc Set in Tournaments. In: FSTTCS 2009, pp. 37–47 (2009)Google Scholar
  8. 8.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand (1997)Google Scholar
  10. 10.
    Byrka, J., Guillemot, S., Jansson, J.: New Results on Optimizing Rooted Triplets Consistency. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 484–495. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Feige, U.: Faster FAST. arXiv.org (November 2009), http://arxiv.org/abs/0911.5094
  12. 12.
    Ga̧sienec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3(2-3), 183–197 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet inconsistency. Journal of Computer and System Sciences 67(4), 723–741 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guillemot, S., Berry, V.: Fixed-parameter tractability of the Maximum Agreement Supertree problem. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 274–285. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Guo, J.: Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted Maximum Agreement Supertrees. Algorithmica 43(4), 293–307 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007, pp. 95–103 (2007)Google Scholar
  18. 18.
    Saurabh, S.: Chromatic coding and universal (hyper-) graph coloring families. Parameterized Complexity News, pp. 49–58 (June 2009), http://mrfellows.net/Newsletters/2009June_FPT_News.pdf
  19. 19.
    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sylvain Guillemot
    • 1
  • Matthias Mnich
    • 2
  1. 1.Lehrstuhl für BioinformatikFriedrich-Schiller Universität JenaJenaGermany
  2. 2.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations