Advertisement

Twisted Jacobi Intersections Curves

  • Rongquan Feng
  • Menglong Nie
  • Hongfeng Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

In this paper, the twisted Jacobi intersections which contains Jacobi intersections as a special case is introduced. We show that every elliptic curve over the prime field with three points of order 2 is isomorphic to a twisted Jacobi intersections curve. Some fast explicit formulae for twisted Jacobi intersections curves in projective coordinates are presented. These explicit formulae for addition and doubling are almost as fast as the Jacobi intersections. In addition, the scalar multiplication can be more effective in twisted Jacobi intersections than in Jacobi intersections. Moreover, we propose new addition formulae which are independent of parameters of curves and more effective in reality than the previous formulae in the literature.

Keywords

elliptic curves Jacobi intersections twisted Jacobi intersections scalar multiplication cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, D.J., Lange, T.: Explicit-formulae database, http://www.hyperelliptic.org/EFD
  2. 2.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multiplication, Cryptology ePrint Archive, Report 2007/455Google Scholar
  4. 4.
    Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7, 385–434 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Feng, R., Nie, M., Wu, H.: Twisted Jacobi Intersections Curves, Full version available at Cryptology ePrint Archive: Report 2009/597, http://eprint.iacr.org/2009/597
  7. 7.
    Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hisil, H., Koon-Ho Wong, K., Carter, G., Dawson, E.: Faster group operations on elliptic curves. In: Brankovic, L., Susilo, W. (eds.) Proc. Seventh Australasian Information Security Conference (AISC 2009), Wellington, New Zealand. CRPIT, vol. 98, pp. 7–19. ACS (2009)Google Scholar
  9. 9.
    Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 391–401. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. CRC Press, Boca Raton (2003)zbMATHGoogle Scholar
  11. 11.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rongquan Feng
    • 1
  • Menglong Nie
    • 1
  • Hongfeng Wu
    • 2
  1. 1.LMAM, School of Mathematical SciencesPeking UniversityBeijingP.R. China
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP.R. China

Personalised recommendations