Advertisement

An \({\mathcal{O}}(n^2)\)-time Algorithm for the Minimal Interval Completion Problem

  • Christophe Crespelle
  • Ioan Todinca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

The minimal interval completion problem consists in adding edges to an arbitrary graph so that the resulting graph is an interval graph; the objective is to add an inclusion minimal set of edges, which means that no proper subset of the added edges can result in an interval graph when added to the original graph. We give an \({\mathcal{O}}(n^2)\)-time algorithm to obtain a minimal interval completion of an arbitrary graph. This improves the previous O(nm) time bound for the problem and lower this bound for the first time below the best known bound for minimal chordal completion.

Keywords

Time Algorithm Maximal Clique Interval Graph Left Branch Forced Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Crespelle, C.: Dynamic representations of interval graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 77–87. Springer, Heidelberg (2010), http://www-npa.lip6.fr/~crespell/publications/DynInt.pdf Google Scholar
  4. 4.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian J. Math. 16, 539–548 (1964)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  6. 6.
    Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Math. 306(3), 297–317 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Heggernes, P., Mancini, F.: Minimal split completions. Discrete Applied Mathematics 157(12), 2659–2669 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions of arbitrary graphs. Discrete Applied Mathematics 156(5), 705–718 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time o(n αlogn) = o(n 2.376). SIAM J. Discrete Math. 19(4), 900–913 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Korte, N., Möhring, R.H.: Transitive orientation of graphs with side constraints. In: Trauner, L. (ed.) 11th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1985), pp. 143–160 (1986)Google Scholar
  12. 12.
    Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation of a graph to obtain an interval graph. Journal of Computer and System Sciences 22(1), 60–97 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Information Processing Letters 5, 195–202 (2008)MathSciNetGoogle Scholar
  15. 15.
    Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. Graph Theory and Computing, 183–217 (1972)Google Scholar
  17. 17.
    Suchan, K., Todinca, I.: Minimal interval completion through graph exploration. Theoretical Computer Science 410(1), 35–43 (2009)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christophe Crespelle
    • 1
  • Ioan Todinca
    • 2
  1. 1.LIP6Université Paris 6 
  2. 2.LIFOUniversité d’OrleansOrleans Cedex 2France

Personalised recommendations