Pivot and Loop Complementation on Graphs and Set Systems

  • Robert Brijder
  • Hendrik Jan Hoogeboom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6108)

Abstract

We study the interplay between principal pivot transform (pivot) and loop complementation for graphs. This is done by generalizing loop complementation (in addition to pivot) to set systems. We show that the operations together, when restricted to single vertices, form the permutation group S3. This leads, e.g., to a normal form for sequences of pivots and loop complementation on graphs. The results have consequences for the operations of local complementation and edge complementation on simple graphs: an alternative proof of a classic result involving local and edge complementation is obtained, and the effect of sequences of local complementations on simple graphs is characterized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: SODA 2000: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 237–245. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  3. 3.
    Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. Journal of Combinatorial Theory, Series B 92(2), 199–233 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouchet, A.: Representability of Δ-matroids. In: Proc. 6th Hungarian Colloquium of Combinatorics, Colloquia Mathematica Societatis János Bolyai, vol. 52, pp. 167–182. North-Holland, Amsterdam (1987)Google Scholar
  5. 5.
    Bouchet, A.: Graphic presentations of isotropic systems. Journal of Combinatorial Theory, Series B 45(1), 58–76 (1988)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouchet, A., Duchamp, A.: Representability of Δ-matroids over \(\emph{GF}(2)\). Linear Algebra and its Applications 146, 67–78 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brijder, R., Hoogeboom, H.J.: The group structure of pivot and loop complementation on graphs and set systems, arXiv:0909.4004 (2009)Google Scholar
  8. 8.
    Brijder, R., Hoogeboom, H.J.: Maximal pivots on graphs with an application to gene assembly, arXiv:0909.3789 (submitted 2009)Google Scholar
  9. 9.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)MATHGoogle Scholar
  10. 10.
    de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local clifford transformations on graph states. Physical Review A 69(2), 022316 (2004)CrossRefGoogle Scholar
  12. 12.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation in Living Cells – Gene Assembly in Ciliates. Springer, Heidelberg (2004)MATHGoogle Scholar
  13. 13.
    Geelen, J.F.: A generalization of Tutte’s characterization of totally unimodular matrices. Journal of Combinatorial Theory, Series B 70, 101–117 (1997)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Heidelberg (2001)MATHGoogle Scholar
  15. 15.
    Oum, S.: Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B 95(1), 79–100 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tsatsomeros, M.J.: Principal pivot transforms: properties and applications. Linear Algebra and its Applications 307(1-3), 151–165 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tucker, A.W.: A combinatorial equivalence of matrices. In: Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics, vol. X, pp. 129–140. American Mathematical Society, Providence (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Brijder
    • 1
  • Hendrik Jan Hoogeboom
    • 1
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityThe Netherlands

Personalised recommendations