Accurately Measuring the Satisfaction of Visual Properties in Virtual Camera Control

  • Roberto Ranon
  • Marc Christie
  • Tommaso Urli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6133)

Abstract

Declarative approaches to camera control model inputs as properties on the camera and then rely on constraint-based and/or optimization techniques to compute the camera parameters or paths that best satisfy those properties. To reach acceptable performances, such approaches often (if not always) compute properties satisfaction in an approximate way. Therefore, it is difficult to measure results in terms of accuracy, and also compare approaches that use different approximations. In this paper, we propose a simple language which can be used to express most of the properties proposed in the literature and whose semantics provide a way to accurately measure their satisfaction. The language can be used for several purposes, for example to measure how accurate a specific approach is and to compare two distinct approaches in terms of accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bares, W.H., Lester, J.C.: Intelligent multi-shot visualization interfaces for dynamic 3d worlds. In: IUI 1999: Proceedings of the 4th international conference on Intelligent user interfaces, pp. 119–126. ACM, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Bares, W.H., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3d camera composition from frame constraints. In: MULTIMEDIA 2000: Proceedings of the eighth ACM international conference on Multimedia, pp. 177–186. ACM, New York (2000)CrossRefGoogle Scholar
  3. 3.
    Bares, W.H., Thainimit, S., McDermott, S.: A model for constraint-based camera planning. In: Proceedings of AAAI Spring Symposium on Smart Graphics, pp. 84–91 (2000)Google Scholar
  4. 4.
    Bourne, O., Sattar, A., Goodwin, S.: A constraint-based autonomous 3d camera system. Constraints 13(1-2), 180–205 (2008), ISSN 1383-7133, http://dx.doi.org/10.1007/s10601-007-9026-8 MATHCrossRefGoogle Scholar
  5. 5.
    Burelli, P., Di Gaspero, L., Ermetici, A., Ranon, R.: Virtual camera composition with particle swarm optimization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 130–141. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Burelli, P., Jhala, A.: Dynamic artificial potential fields for autonomous camera control in 3d environments. In: Proceedings of Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2009). AAAI Press, Menlo Park (2009)Google Scholar
  7. 7.
    Christie, M., Languénou, E.: A constraint-based approach to camera path planning. In: Butz, A., krüger, A., Olivier, P. (eds.) SG 2003. LNCS, vol. 2733, pp. 172–181. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Christie, M., Normand, J.-M.: A semantic space partitionning approach to virtual camera control. In: Proceedings of the Annual Eurographics Conference, pp. 247–256 (2005)Google Scholar
  9. 9.
    Christie, M., Olivier, P., Normand, J.-M.: Camera control in computer graphics. Comput. Graph. Forum 27(8), 2197–2218 (2008)CrossRefGoogle Scholar
  10. 10.
    Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Proceedings of Graphics Interface 1994, pp. 190–199 (1994)Google Scholar
  11. 11.
    Gooch, B., Reinhard, E., Moulding, C., Shirley, P.: Artistic composition for image creation. In: Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pp. 83–88. Springer, London (2001) ISBN 3-211-83709-4Google Scholar
  12. 12.
    Halper, N., Helbing, R., Strothotte, T.: A camera engine for computer games: Managing the trade-off between constraint satisfaction and frame coherence. Comput. Graph. Forum 20(3) (2001)Google Scholar
  13. 13.
    Halper, N., Olivier, P.: CamPlan: A camera planning agent. In: Smart Graphics 2000 AAAI Spring Symposium, pp. 92–100. AAAI Press, Menlo Park (2000)Google Scholar
  14. 14.
    Hawkins, B.: Real-Time Cinematography for Games (Game Development Series). Charles River Media, Inc., Rockland (2004) ISBN 1584503084Google Scholar
  15. 15.
    Schaufler, G.: Nailboards: A rendering primitive for image caching in dynamic scenes. In: Rendering Techniques 1997: Proceedings of the Eurographics Rendering Workshop, pp. 151–162. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roberto Ranon
    • 1
  • Marc Christie
    • 2
  • Tommaso Urli
    • 1
  1. 1.HCI LabUniversity of UdineUdineItaly
  2. 2.IRISA/INRIA Rennes Bretagne AtlantiqueRennes CedexFrance

Personalised recommendations