Two Ensemble Classifiers Constructed from GEP-Induced Expression Trees

  • Joanna Jȩdrzejowicz
  • Piotr Jȩdrzejowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6071)


In this paper we propose two ensemble classifiers using expression trees as weak classifiers. The first ensemble uses the AdaBoost approach and the second makes use of Dempster’âĂŹs rule of combination and applies triplet mass functions to combine classifiers. The performance of both ensemble classifiers is evaluated experimentally. The experiment involved 9 well known datasets from the UCI Irvine Machine Learning Repository. Experiment results show that using GEP-induced expression trees allows to construct high quality ensemble classifiers.


gene expression programming AdaBoost evidentional reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, University of California, School of Information and Computer Science (2007)
  2. 2.
    Bi, Y., Guan, J., Bell, D.: The combination of multiple classifiers using an evidentional reasoning approach. Artif. Intell. 172, 1731–1751 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Centeno, P., Lawrence, N.D.: Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis. Journal of Machine Learning Research 7, 455–491 (2006)Google Scholar
  4. 4.
    Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ferreira, C.: Gene Expression Programming. Studies in Computational Intell. 21, 337–380 (2006)CrossRefGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and application to boosting. Journal of Computer and System Science 55, 119–139 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
  8. 8.
    Ishibuchi, H., Nojima, Y.: Analysis of Interpretability-accuracy Tradeoff of Fuzzy Systems by Multiobjective Fuzzy Genetics-based Machine Learning. Intern. Journal of Approximate Reasoning 44, 4–31 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jedrzejowicz, J., Jedrzejowicz, P.: GEP-induced expression trees as weak classifiers. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 129–141. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Jedrzejowicz, J., Jedrzejowicz, P.: A Family of GEP-induced Ensemble Classifiers. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. Lecture Notes in Computer Science (LNAI), vol. 5796, pp. 641–652. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kretowski, M.: SOFSEM 2008. LNCS, vol. 4910, pp. 531–540. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 3, 22–43 (2006)Google Scholar
  13. 13.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  14. 14.
    Torre, F.: Boosting Correct Least General Generalizations, Technical Report GRApp A-0104, Grenoble (2004)Google Scholar
  15. 15.
    Weinert, W.R., Lopes, H.S.: GEPCLASS: A Classification Rule Discovery Tool Using Gene Expression Programming. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 871–880. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Zhou, C., Xiao, W., Tirpak, T.M., Nelson, P.C.: Evolving Accurate and Compact Classification Rules with Gene Expression Programming. IEEE Transactions on Evolutionary Computation 7(6), 519–531 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joanna Jȩdrzejowicz
    • 1
  • Piotr Jȩdrzejowicz
    • 2
  1. 1.Institute of InformaticsGdańsk UniversityGdańskPoland
  2. 2.Department of Information SystemsGdynia Maritime UniversityGdyniaPoland

Personalised recommendations