A Note on a Formal Approach to Rough Operators

  • Adam Grabowski
  • Magdalena Jastrzȩbska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6086)


The paper is devoted to the formalization of two elementary but important problems within rough set theory. We mean searching for the minimal requirements of the well-known rough operators – the lower and the upper approximations in an abstract approximation space to retain their natural properties. We also discuss pros and cons of the development of the computer-checked repository for rough set theory based on the comparison of certain rough approximation operators proposed by Anna Gomolińska.


Approximation Space Uncertainty Mapping Merging Operator Indiscernibility Relation Mizar Mathematical Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bryniarski, E.: Formal conception of rough sets. Fundamenta Informaticae 27(2-3), 109–136 (1996)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Dahn, B.I.: Robbins algebras are Boolean: A revision of McCune’s computer-generated solution of the Robbins problem. J. of Algebra 208(2), 526–532 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gomolińska, A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae 51(1-2), 103–119 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Grabowski, A.: Basic properties of rough sets and rough membership function. Formalized Mathematics 12(1), 21–28 (2004)Google Scholar
  5. 5.
    Grabowski, A., Jastrzȩbska, M.: Rough set theory from a math-assistant perspective. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 152–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Grabowski, A., Schwarzweller, C.: Rough Concept Analysis – theory development in the Mizar system. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 130–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y.Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Jiang, B., Qin, K., Pei, Z.: On transitive uncertainty mappings. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 42–49. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Liang, X., Li, D.: On rough subgroup of a group. To appear in Formalized Mathematics (2009); MML Id: GROUP_11Google Scholar
  10. 10.
    Mizar Home Page,
  11. 11.
    Padlewska, B.: Families of sets. Formalized Mathematics 1(1), 147–152 (1990)Google Scholar
  12. 12.
    Samanta, P., Chakraborty, M.: Covering based approaches to rough sets and implication lattices. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 127–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Qin, K., Yang, J., Pei, Z.: Generalized rough sets based on reflexive and transitive relations. Information Sciences 178, 4138–4141 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Zhang, H., Ouyang, Y., Wang, Z.: Note on “Generalized rough sets based on reflexive and transitive relations”. Information Sciences 179, 471–473 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhu, W.: Generalized rough sets based on relations. Information Sciences 177, 4997–5011 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Grabowski
    • 1
  • Magdalena Jastrzȩbska
    • 1
  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland

Personalised recommendations