Personalized Ontology-Based Recommender Systems for Multimedia Objects

  • Krzysztof Juszczyszyn
  • Przemysław Kazienko
  • Katarzyna Musiał
Part of the Studies in Computational Intelligence book series (SCI, volume 289)


A framework for recommendation of multimedia objects based on processing of individual ontologies is proposed in the chapter. The recommendation process takes into account similarities calculated both between objects’ and users’ ontologies, which reflect the social and semantic features existing in the system. The ontologies, which are close to the current context, provide a list of suggestions presented to the user. Each user in the system possesses its own Personal Agent that performs all necessary online tasks. Personal Agents co-operate each other and enrich lists of possible recommendations. The system was developed for the use inthe Flickr multimedia sharing system.


Recommender System Personal Agent Current User Media Object Recommendation List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Andrea, M., Egenhofer, M.: Determining Semantic Similarity Among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15, 442–456 (2003)CrossRefGoogle Scholar
  3. 3.
    Castells, P., Fersandez, M., Vallet, D., Mylonas, P., Avrithis, Y.: Self-Tuning Personalized Information Retrieval in a n Ontology-based Framework. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 977–986. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Croitoru, M., Hu, B., Dashmapatra, S., Lewis, P., Dupplaw, D., Xiao, L.: A Conceptual Graph Based Approach to Ontology Similarity Measure. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 154–164. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dellschaft, K., Staab, S.: On How to Perform a Gold Standard Based Evaluation of Ontology Learning. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 228–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Guarino, N., Giaretta, P.: Ontologies and Knowledge bases: towards a terminological Clarification. In: Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, pp. 25–32. IOS Press, Amsterdam (1995)Google Scholar
  7. 7.
    Gruber, T.: Ontology of Folksonomy: A Mash-Up of Apples and Oranges. International Journal on Semantic Web & Information Systems 3(1), 1–11 (2005); also The First on-line Conference on Metadata and Semantics Research (MTSR 2005)Google Scholar
  8. 8.
    Ha, S.H.: Helping Online Customers Decide through Web Personalization. IEEE Intelligent Systems 17(6), 34–43 (2002)MathSciNetGoogle Scholar
  9. 9.
    Hsief, S.M., Huang, S.J., Hsu, C.C., Chang, H.C.: Personal Documents Recommendation System Based on Data Mining Techniques. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 51–57. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  10. 10.
    Hyvonen, E., Saarela, S., Vilijanen, K.: Ontogator: Combining View- and Ontology-Based Search with Semantic Browsing. In: XML Finland 2003, Kuopio (2003)Google Scholar
  11. 11.
    Juszczyszyn, K.: Virtual Communities and the Alignment of Web Ontologies. In: Dasgupta, S. (ed.), pp. 497–499. Idea Group Reference, Hershey (2006)Google Scholar
  12. 12.
    Kazienko, P., Kołodziejski, P.: Personalized Integration of Recommendation Methods for E-commerce. International Journal of Computer Science & Applications 3(3), 12–26 (2006)Google Scholar
  13. 13.
    Kazienko, P., Adamski, M.: AdROSA - Adaptive Personalization of Web Advertising. Information Sciences 177(11), 2269–2295 (2007)CrossRefGoogle Scholar
  14. 14.
    Kazienko, P., Musiał, K.: Recommendation Framework for Online Social Networks. In: The 4th Atlantic Web Intelligence Conference, AWIC 2006, Beer-Sheva, Israel, June 5-7. Studies in Computational Intelligence, pp. 111–120. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator - A Semantic View-Based Search Engine Service for Web Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 847–860. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    McDonald, D.W.: Ubiquitous recommendation systems. IEEE Computer 36(10), 111–112 (2003)Google Scholar
  18. 18.
    Middleton, S.E., Alani, H., Shadbolt, N.R., De Roure, D.C.: Exploiting Synergy Between Ontologies and Recommender Systems. In: The 11th International World Wide Web Conference WWW, pp. 41–50 (2002)Google Scholar
  19. 19.
    Middleton, S.E., Shadbolt, N., De Roure, D.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)CrossRefGoogle Scholar
  20. 20.
    Musiał, K., Kazienko, P., Kajdanowicz, T.: Social Recommendations within the Multimedia Sharing Systems. In: Lytras, M.D., Carroll, J.M., Damiani, E., Tennyson, R.D. (eds.) WSKS 2008. LNCS (LNAI), vol. 5288, pp. 364–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Ning, K., Gong, R., Decker, S., Chen, Y., O’Sullivan, D.A.: Context-Aware Resource Recommendation System for Business Collaboration. In: 9th IEEE International Conference on E-Commerce Technology and the 4th IEEE International Conference on Enterprise Computing, CEC/EEE 2007, July 23-26, pp. 457–460. IEEE Computer Society, Tokyo (2007)CrossRefGoogle Scholar
  22. 22.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27, 313–331 (1997)CrossRefGoogle Scholar
  23. 23.
    Perguini, S., Goncalves, M.A., Fox, E.A.: Recommender systems research: A Connection-Centric Survey. Journal of Intelligent Information Systems 23(2), 107–143 (2004)CrossRefGoogle Scholar
  24. 24.
    Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: A system for sharing recommendations. Communications of the ACM 40(3), 59–62 (1997)CrossRefGoogle Scholar
  26. 26.
    Weng, L.T., Xu, Y., Li, Y.: A Framework for E-commerce Oriented Recommendation Systems. In: The 2005 International Conference on Active Media Technology AMT 2005, pp. 309–314. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  27. 27.
    Ziegler, C., Lindner, W.: SemanticWeb Recommender Systems. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 78–89. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krzysztof Juszczyszyn
    • 1
  • Przemysław Kazienko
    • 1
  • Katarzyna Musiał
    • 1
  1. 1.Wrocław University of TechnologyWrocławPoland

Personalised recommendations