Mobile Agents and Eventually Perfect Predicate Detection: An Intelligent General Approach to Monitoring Distributed Systems

  • Chunbo Chu
  • Monica Brockmeyer


This chapter presents an application of mobile agents to solve distributed predicate detection by distributing and delegating monitoring tasks, result collection, and aggregation to overcome the scalability and flexibility limitations (as compared to most traditional centralized predicate detection approaches). Mobile agents are very useful for monitoring purposes because mobility gives the agents the autonomy needed to monitor the computation effectively. By restructuring the implementation of an eventually accurate failure detection sequencer into mobile agents, the functionalities of predicate detection in a failure-prone partially synchronous system are clearly separated from the monitored computation. The separation leads to additional benefits of enhanced flexibility, performance, and robustness. It provides a solution to create a general-purpose predicate detection infrastructure that provides the basic functionalities to achieve reasonable predicate detection semantics in a realistic distributed system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dollimore, J., Kindberg, T., Coulouris, G.: Distributed Systems: Concepts and Design, 4th edn. Addison-Wesley, Reading (2005)Google Scholar
  2. 2.
    Alagar, S., Venkatesan, S.: Techniques to tackle state explosion in global predicate detection. IEEE Transactions on Software Engineering 27(8), 704–714 (2001)CrossRefGoogle Scholar
  3. 3.
    Chase, C.M., Garg, V.K.: Detection of global predicates: Techniques and their limitations. Distributed Computing 11(4), 191–201 (1998)CrossRefGoogle Scholar
  4. 4.
    Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging. ACM SIGPLAN Notices, vol. 26, pp. 167–174 (1991)Google Scholar
  5. 5.
    Garg, V.K., Mittal, N.: On slicing a distributed computation. In: Proceedings of the 21st IEEE International Conference on Distributed Computing Systems (ICDCS 2001), pp. 322–329 (2001)Google Scholar
  6. 6.
    Sen, A., Garg, V.K.: Detecting temporal logic predicates on the happened-before model. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS 2002), vol. 116 (2002)Google Scholar
  7. 7.
    Stoller, S.D.: Detecting global predicates in distributed systems with clocks. In: Mavronicolas, M. (ed.) WDAG 1997. LNCS, vol. 1320, pp. 185–199. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chandy, K.M., Misra, J.: How processes learn. Distributed Computing 1(1), 40–52 (1986)MATHCrossRefGoogle Scholar
  10. 10.
    Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Distributed Computing 13(2), 85–98 (2000)CrossRefGoogle Scholar
  11. 11.
    Waldo, J.: Mobile code, distributed computing, and agents. IEEE Intelligent Systems 16(2), 10–12 (2001)Google Scholar
  12. 12.
    Chu, C., Brockmeyer, M.: Eventually perfect predicate detection in crash-affected finite average response time systems. International Journal of Parallel, Emergent and Distributed Systems (2009) (to appear)Google Scholar
  13. 13.
    Corell, E., Saxholm, P., Veitch, D.: A user friendly TSC clock. In: Passive and Active Measurement Conference, Adelaide, Australia (March 2006)Google Scholar
  14. 14.
    IEEE: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. ANSI/IEEE Std 1588-2002 (2002)Google Scholar
  15. 15.
    Mills, D.L.: Improved algorithms for synchronizing computer network clocks. IEEE/ACM Transactions on Networking 3(3), 245–254 (1995)CrossRefGoogle Scholar
  16. 16.
    Veitch, D., Babu, S., Pàsztor, A.: Robust synchronization of software clocks across the Internet. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement (IMC 2004 ), pp. 219–232 (2004)Google Scholar
  17. 17.
    Zhang, L., Liu, Z., Xia, C.H.: Clock synchronization algorithms for network measurements. In: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM 2002), vol. 1, pp. 160–169 (2002)Google Scholar
  18. 18.
    Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Transactions on Communications 39(10), 1482–1493 (1991)CrossRefGoogle Scholar
  19. 19.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Chu, C., Brockmeyer, M.: Predicate detection modality and semantics in three partially synchronous models. In: Proceedings of the 7th IEEE/ACIS International Conference on Computer and Information Science, pp. 444–450 (2008)Google Scholar
  21. 21.
    Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreliable failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 34–48. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Larrea, M., Fernández, A., Arévalo, S.: On the impossibility of implementing perpetual failure detectors in partially synchronous systems. In: Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, pp. 99–105 (2002)Google Scholar
  23. 23.
    Motshegwa, T., Schroeder, M.: Interaction monitoring and termination detection for agent societies: Preliminary results. In: Omicini, A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071, pp. 136–154. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Milojičić, D., Douglis, F., Wheeler, R.: Mobility: processes, computers, and agents. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  25. 25.
    Gärtner, F.C., Pleisch, S.: Failure detection sequencers: Necessary and sufficient information about failures to solve predicate detection. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 280–294. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Charron-Bost, B., Delporte-Gallet, C., Fauconnier, H.: Local and temporal predicates in distributed systems. ACM Trans. Program. Lang. Syst. 17(1), 157–179 (1995)CrossRefGoogle Scholar
  27. 27.
    Gärtner, F.C., Pleisch, S. (Im)Possibilities of predicate detection in crash-affected systems. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 98–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Fetzer, C., Schmid, U., Süsskraut, M.: On the possibility of consensus in asynchronous systems with finite average response times. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS 2005), pp. 271–280 (2005)Google Scholar
  29. 29.
    Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief survey). In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 127–140. Springer, Heidelberg (1983)Google Scholar
  30. 30.
    Ilarri, S., Mena, E., Illarramendi, A.: Using cooperative mobile agents to monitor distributed and dynamic environments. Information Sciences 178(9), 2105–2127 (2008)CrossRefGoogle Scholar
  31. 31.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43(2), 225–267 (1996)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21(7), 558–565 (1978)MATHCrossRefGoogle Scholar
  33. 33.
    Guerraoui, R., Olivera, R., Schiper, A.: Stubborn communication channels. Technical Report 98-278, Département d’Informatique, École Polytechnique Fédérale de Lausanne (1998)Google Scholar
  34. 34.
    Brewington, B., Gray, R., Moizumi, K., Kotz, D., Cybenko, G., Rus, D.: Mobile agents in distributed information retrieval. In: Intelligent Information Agents, pp. 355–395. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chunbo Chu
    • 1
  • Monica Brockmeyer
    • 2
  1. 1.Franklin UniversityColumbusUSA
  2. 2.Wayne State UniversityDetroitUSA

Personalised recommendations