Reversibility and Determinism in Sequential Multiset Rewriting

  • Artiom Alhazov
  • Rudolf Freund
  • Kenichi Morita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6079)


We study reversibility and determinism aspects of sequential multiset processing systems, and the strong versions of these properties.

Syntactic criteria are established for both strong determinism and for strong reversibility. It also shown that without control all four classes – deterministic, strongly deterministic, reversible, strongly reversible – are not universal, while allowing priorities or inhibitors the first and the third class become universal. Moreover, strongly deterministic multiset rewriting systems with priorities are also universal.


Cellular Automaton Turing Machine Deterministic System Parallel Case Register Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Dual P Systems. In: Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Morita, K.: On Reversibility and Determinism in P Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A. (eds.) Preproc. of Membrane Computing - 10th International Workshop, pp. 129–139Google Scholar
  3. 3.
    Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and Development 17, 525–532 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Calude, C., Păun, G.: Bio-steps beyond Turing. BioSystems 77, 175–194 (2004)CrossRefGoogle Scholar
  5. 5.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. In: EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)Google Scholar
  6. 6.
    Fredkin, E., Toffoli, T.: Conservative Logic. Int. J. Theoret. Phys. 21, 219–253 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freund, R., Ibarra, O.H., Păun, G., Yen, H.-C.: Matrix languages, register machines, vector addition systems. In: Proc. Third Brainstorming Week on Membrane Computing, Sevilla, pp. 155–168 (2005)Google Scholar
  8. 8.
    Ibarra, O.H.: On Strong Reversibility in P Systems and Related Problems (manuscript)Google Scholar
  9. 9.
    Leporati, A., Zandron, C., Mauri, G.: Reversible P Systems to Simulate Fredkin Circuits. Fundam. Inform. 74(4), 529–548 (2006)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  11. 11.
    Morita, K.: Universality of a Reversible Two-Counter Machine. Theoret. Comput. Sci. 168, 303–320 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Morita, K.: A Simple Reversible Logic Element and Cellular Automata for Reversible Computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, p. 102. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Morita, K.: Simple Universal One-Dimensional Reversible Cellular Automata. J. Cellular Automata 2, 159–165 (2007)zbMATHGoogle Scholar
  14. 14.
    Morita, K., Nishihara, N., Yamamoto, Y., Zhang, Z.: A Hierarchy of Uniquely Parsable Grammar Classes and Deterministic Acceptors. Acta Inf. 34(5), 389–410 (1997)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Morita, K., Yamaguchi, Y.: A Universal Reversible Turing Machine. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  17. 17.
    P systems webpage,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Rudolf Freund
    • 3
  • Kenichi Morita
    • 1
  1. 1.IEC, Department of Information Engineering, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaMoldova
  3. 3.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations