Advertisement

Finite State Transducers with Intuition

  • Ruben Agadzanyan
  • Rūsiņš Freivalds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6079)

Abstract

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable by nondeterministic nor probabilistic automata. We hope that mechanisms like the one considered in this paper may be useful to construct a mathematical model for human intuition.

Keywords

Random Sequence Turing Machine Kolmogorov Complexity Input Word Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)Google Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, Chichester (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  4. 4.
    Bārzdiņš, J. (Barzdin, J.M.): On a Class of Turing Machines (Minsky Machines). Algebra i Logika 3(1) (1963) (Russian); Review in The Journal of Symbolic Logic 32(4), 523–524 (1967) Google Scholar
  5. 5.
    Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 565–613. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. Journal of the Association for Computing Machinery 39(4), 800–828 (1992)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Erdös, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53(4), 292–294 (1947)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In: Karp, R. (ed.) SIAM-AMS Proceedings of Complexity of Computation, vol. 7, pp. 27–41 (1974)Google Scholar
  9. 9.
    Freivalds, R. (Freivald, R.V.): Recognition of languages with high probability on different classes of automata. Dolady Akademii Nauk SSSR 239(1), 60–62 (1978) (Russian) Google Scholar
  10. 10.
    Freivalds, R.: Projections of Languages Recognizable by Probabilistic and Alternating Finite Multitape Automata. Information Processing Letters 13(4/5), 195–198 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Freivalds, R.: Amount of nonconstructivity in finite automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 227–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Freivalds, R.: Multiple usage of random bits by finite automata. Unpublished manuscript (2010)Google Scholar
  15. 15.
    Hilbert, D.: Uber die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)MathSciNetGoogle Scholar
  18. 18.
    Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413–1416 (1973)zbMATHGoogle Scholar
  19. 19.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  21. 21.
    Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5(3), 246–258 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Schnorr, C.-P.: Process Complexity and Effective Random Tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Spencer, J.: Nonconstructive methods in discrete mathematics. In: Rota, G.-C. (ed.) Studies in Mathematics, MAA, vol. 17, pp. 142–178 (1978)Google Scholar
  25. 25.
    Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited computations. In: Proceedings of FOCS, pp. 179–190 (1965)Google Scholar
  26. 26.
    Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of One Tape Linear Time Turing Machines. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 335–348. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Yamakami, T.: Swapping lemmas for regular and context-free languages with advice. The Computing Research Repository (CoRR), CoRR abs/0808.4122 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ruben Agadzanyan
    • 1
  • Rūsiņš Freivalds
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia

Personalised recommendations