Computable Scientists, Uncomputable World

(Abstract)
  • José Félix Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6079)

Abstract

Consider the classical model of a Turing machine with an oracle. The classical oracle is a one step external consultation device. The oracle may contain either non-computable information, or computable information provided just to speed up the computations of the Turing machine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences) 464(2098), 2777–2801 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles II. Upper bounds. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences) 465(2105), 1453–1465 (2009)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beggs, E., Costa, J.F., Tucker, J.: Physical oracles: the Turing machine and the Wheatstone bridge. In: Studia Logica, Trends in Logic VI: The Contributions of Logic to the Foundations of Physics, 22 p. (to appear 2010)Google Scholar
  4. 4.
    Beggs, E., Costa, J.F., Tucker, J.V.: Computational Models of Measurement and Hempel’s Axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity and Knowledge Construction. Theory and Decision Library A, vol. 46, pp. 155–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Beggs, E., Costa, J.F., Tucker, J.V.: Physical experiments as oracles. Bulletin of the European Association for Theoretical Computer Science 97, 137–151 (2009); An invited paper for the Natural Computing Column MathSciNetGoogle Scholar
  6. 6.
    Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments governed by algorithms, 33 p. (submitted 2010)Google Scholar
  7. 7.
    Bohm, D.: Wholeness and the Implicate Order. Routledge, New York (1996)Google Scholar
  8. 8.
    Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theoretical Computer Science 168(2), 417–459 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Campbell, N.R.: Foundations of Science, The Philosophy of Theory and Experiment. Dover, New York (1957)Google Scholar
  10. 10.
    Carnap, R.: Philosophical Foundations of Physics. Basic Books, New York (1966)Google Scholar
  11. 11.
    Geroch, R., Hartle, J.B.: Computability and Physical Theories. Foundations of Physics 16(6), 533–550 (1986)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hempel, C.G.: Fundamentals of concept formation in empirical science. International Encyclopedia of Unified Science 2(7) (1952)Google Scholar
  13. 13.
    Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn. In: An Introduction to Learning Theory. The MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Krantz, D.H., Suppes, P., Luce, R.D., Tversky, A.: Foundations of Measurement. Dover, New York (2009)Google Scholar
  15. 15.
    Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Basel (1999)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • José Félix Costa
    • 1
    • 2
    • 3
  1. 1.Departamento de Matemática, Instituto Superior TécnicoUniversidade Técnica de Lisboa 
  2. 2.Centro de Matemática e Aplicações Fundamentais do Complexo InterdisciplinarUniversidade de Lisboa 
  3. 3.Centro de Filosofia das Ciências da Universidade de Lisboa 

Personalised recommendations