Abstract

This paper introduces the Increasing_Nvalue constraint, which restricts the number of distinct values assigned to a sequence of variables so that each variable in the sequence is less than or equal to its successor. This constraint is a specialization of the Nvalue constraint, motivated by symmetry breaking. Propagating the Nvalue constraint is known as an NP-hard problem. However, we show that the chain of non strict inequalities on the variables makes the problem polynomial. We propose an algorithm achieving generalized arc-consistency in ODi) time, where ΣDi is the sum of domain sizes. This algorithm is an improvement of filtering algorithms obtained by the automaton-based or the Slide-based reformulations. We evaluate our constraint on a resource allocation problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choco: An open source Java CP library, documentation manual (2009), http://choco.emn.fr/
  2. 2.
    Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog, working version of January 2010. Technical Report T2005-08, Swedish Institute of Computer Science (2005), www.emn.fr/x-info/sdemasse/gccat
  3. 3.
    Beldiceanu, N., Carlsson, M., Thiel, S.: Cost-Filtering Algorithms for the two Sides of the sum of weights of distinct values Constraint. Technical report, Swedish Institute of Computer Science (2002)Google Scholar
  4. 4.
    Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering Algorithms for the nvalue Constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 79–93. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: A useful special case of the CARDPATH constraint. In: ECAI 2008, Proceedings, pp. 475–479 (2008)Google Scholar
  6. 6.
    Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The Complexity of Global Constraints. In: 19th National Conference on Artificial Intelligence (AAAI 2004), pp. 112–117. AAAI Press, Menlo Park (2004)Google Scholar
  7. 7.
    Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. In: VEE 2009: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 41–50 (2009)Google Scholar
  9. 9.
    Katsirelos, G., Narodytska, N., Walsh, T.: Combining Symmetry Breaking and Global Constraints. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 84–98. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Pachet, F., Roy, P.: Automatic Generation of Music Programs. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Ågren, M., Beldiceanu, N., Carlsson, M., Sbihi, M., Truchet, C., Zampelli, S.: Six Ways of Integrating Symmetries within Non-Overlapping Constraints. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 11–25. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nicolas Beldiceanu
    • 1
  • Fabien Hermenier
    • 1
  • Xavier Lorca
    • 1
  • Thierry Petit
    • 1
  1. 1.Mines-Nantes, LINA UMR CNRS 6241NantesFrance

Personalised recommendations