The Highest Expected Reward Decoding for HMMs with Application to Recombination Detection

  • Michal Nánási
  • Tomáš Vinař
  • Broňa Brejová
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6129)

Abstract

Hidden Markov models are traditionally decoded by the Viterbi algorithm which finds the highest probability state path in the model. In recent years, several limitations of the Viterbi decoding have been demonstrated, and new algorithms have been developed to address them (Kall et al., 2005; Brejova et al., 2007; Gross et al., 2007; Brown and Truszkowski, 2010). In this paper, we propose a new efficient highest expected reward decoding algorithm (HERD) that allows for uncertainty in boundaries of individual sequence features. We demonstrate usefulness of our approach on jumping HMMs for recombination detection in viral genomes.

Keywords

hidden Markov models decoding algorithms recombination detection jumping HMMs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brejova, B., Brown, D.G., Vinar, T.: The most probable annotation problem in HMMs and its application to bioinformatics. Journal of Computer and System Sciences 73(7), 1060–1077 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. Brown, D.G., Truszkowski, J.: New decoding algorithms for hidden Markov models using distance measures on labellings. BMC Bioinformatics 11(S1), S40 (2010)Google Scholar
  3. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  4. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2004)Google Scholar
  5. Forney Jr., G.D.: The Viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)CrossRefMathSciNetGoogle Scholar
  6. Gross, S.S., Do, C.B., Sirota, M., Batzoglou, S.: CONTRAST: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biology 8(12), R269 (2007)Google Scholar
  7. Hamada, M., Kiryu, H., Sato, K., Mituyama, T., Asai, K.: Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 25(4), 465–473 (2009)CrossRefGoogle Scholar
  8. Kall, L., Krogh, A., Sonnhammer, E.L.L.: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(S1), i251–i257 (2005)CrossRefGoogle Scholar
  9. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome Biology 5(2), R12 (2004)Google Scholar
  10. Robertson, D.L., et al.: HIV-1 nomenclature proposal. Science 288(5463), 55–56 (2000)CrossRefGoogle Scholar
  11. Schultz, A.-K., Zhang, M., Bulla, I., Leitner, T., Korber, B., Morgenstern, B., Stanke, M.: jpHMM: improving the reliability of recombination prediction in HIV-1. Nucleic Acids Research 37(W), W647–W651 (2009)CrossRefGoogle Scholar
  12. Schultz, A.-K., Zhang, M., Leitner, T., Kuiken, C., Korber, B., Morgenstern, B., Stanke, M.: A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. BMC Bioinformatics 7, 265 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michal Nánási
    • 1
  • Tomáš Vinař
    • 1
  • Broňa Brejová
    • 1
  1. 1.Faculty of Mathematics, Physics, and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations