Advertisement

Bounds on the Minimum Mosaic of Population Sequences under Recombination

  • Yufeng Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6129)

Abstract

We study the minimum mosaic problem, an optimization problem originated in population genomics. We develop a new lower bound, called the C bound. The C bound is provably higher and significantly more accurate in practice than an existing bound. We show how to compute the exact C bound using integer linear programming. We also show that a weaker version of the C bound is also more accurate than the existing bound, and can be computed in polynomial time. Simulation shows that the new bounds often match the exact optimum at least for the range of data we tested. Moreover, we give an analytical upper bound for the minimum mosaic problem.

Keywords

Bipartite Graph Input Sequence Linear Programing Relaxation Mosaic Structure Population Genomic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudson, R.: Generating Samples under the Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)CrossRefGoogle Scholar
  2. 2.
    Kimmel, G., Shamir, R.: A block-free hidden markov model for genotypes and its application to disease association. J. of Comp. Bio. 12, 1243–1260 (2005)CrossRefGoogle Scholar
  3. 3.
    Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint method for genome-wide associationstudies by imputation of genotypes. Nature Genetics 39, 906–913 (2007)CrossRefGoogle Scholar
  4. 4.
    Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003)Google Scholar
  5. 5.
    Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A Hidden Markov Technique for Haplotype Reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Rastas, P., Ukkonen, E.: Haplotype Inference Via Hierarchical Genotype Parsing. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 85–97. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Roli, A., Blum, C.: Tabu Search for the Founder Sequence Reconstruction Problem: A Preliminary Study. In: Proceedings of Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living (IWANN 2009), pp. 1035–1042 (2009)Google Scholar
  8. 8.
    Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Human Genetics 78, 629–644 (2006)CrossRefGoogle Scholar
  9. 9.
    Schwartz, R., Clark, A., Istrail, S.: Methods for Inferring Block-Wise Ancestral History from Haploid Sequences. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 44–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Ukkonen, E.: Finding Founder Sequences from a Set of Recombinants. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277–286. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Wu, Y.: Analytical Upper Bound on the Minimum Number of Recombinations in the History of SNP Sequences in Populations, Info. Proc. Letters 109, 427–431 (2009)CrossRefGoogle Scholar
  12. 12.
    Wu, Y., Gusfield, D.: Improved Algorithms for Inferring the Minimum Mosaic of a Set of Recombinants. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 150–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Wang, W., McMillan, L., Prins, J., de Villena, F.P., Threadgill, D.: Genotype Sequence Segmentation: Handling Constraints and Noise. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 271–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yufeng Wu
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of ConnecticutStorrsU.S.A.

Personalised recommendations