SVM Classifier Based Feature Selection Using GA, ACO and PSO for siRNA Design

  • Yamuna Prasad
  • K. Kanad Biswas
  • Chakresh Kumar Jain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6146)


Recently there has been considerable interest in applying evolutionary and natural computing techniques for analyzing large datasets with large number of features. In particular, efficacy prediction of siRNA has attracted a lot of researchers, because of large number of features involved. In the present work, we have applied the SVM based classifier along with PSO, ACO and GA on Huesken dataset of siRNA features as well as on two other wine and wdbc breast cancer gene benchmark dataset and achieved considerably high accuracy and the results have been presented. We have also highlighted the necessary data size for better accuracy in SVM for selected kernel. Both groups of features (sequential and thermodynamic) are important in the efficacy prediction of siRNA. The results of our study have been compared with other results available in the literature.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saetrom, P., Snove, O.: A comparison of siRNA efficacy predictors. Biochem. Biophys. Re. Commun. 321(1), 247–253 (2004)CrossRefGoogle Scholar
  2. 2.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., Khvorova, A.: Rational siRNA design for RNA interference. Nat. Biotechnol. 22(3), 326–330 (2004)CrossRefGoogle Scholar
  3. 3.
    Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D., Labow, M., Reinhardt, M., Natt, F., Hall, J.: Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhi, J.L., David, H.M.: OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Research 36(Suppl. 2), 104–108 (2008)Google Scholar
  5. 5.
    Xiaowei, W., Xiaohui, W., Verma Rajeev, K., Beauchamp, L., Maghdaleno, S., Surendra, T.J.: Selection of Hyperfunctional siRNAs with improved potency and specificity. Nucleic Acids Research 37(22), 152 (2009)CrossRefGoogle Scholar
  6. 6.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, School of Information and Computer Science. University of California, Irvine (2007),
  7. 7.
    Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines (2001),
  8. 8.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part B 26(1), 29–42 (1996)CrossRefGoogle Scholar
  9. 9.
    Cheng-Lung, H.: ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing 73, 438–448 (2009)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science, 243–278 (2005)Google Scholar
  11. 11.
    Tsang, C.H.: Ant Colony Clustering and Feature Extraction for Anomaly Intrusion Detection. In: Swarm Intelligence in Data Mining, pp. 101–123. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Nemati, S., Basiri, M.E., Ghasem-Aghaee, N., Aghdam, M.H.: A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert Systems with Applications 36, 12086–12094 (2009)CrossRefGoogle Scholar
  13. 13.
    Aghdam, M.H., Ghasem-Aghaee, N., Basiri, M.E.: Text feature selection using ant colony optimization. Expert Systems with Applications 36, 6843–6853 (2009)CrossRefGoogle Scholar
  14. 14.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intelligent Systems 13(2), 44–49 (1998)CrossRefGoogle Scholar
  15. 15.
    Zhao, X., Huang, D., Cheung, Y., Wang, H., Huang, X.: A Novel Hybrid GA/SVM System for Protein Sequences Classification. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 11–16. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Raymer, M., Punch, W., Goodman, E., Kuhn, L., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computing 4, 164–171 (2000)CrossRefGoogle Scholar
  17. 17.
    Chung-Jui, T., Li-Yeh, C., Jun-Yang, C., Cheng-Hong, Y.: Feature Selection using PSO-SVM. IAENG International Journal of Computer Science, IJCS 33(1), 18 (2007)Google Scholar
  18. 18.
    Liu, Y., Qin, Z., Xu, Z., He, H.: Feature selection with particle swarms. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 425–430. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Khanesar, M.A., Teshnehlab, M., Soorehdeli, M.A.: A Novel Binary Particle Swarm Optimization. In: Proc. 15th Mediterranean Conference on Control and Automation (2007)Google Scholar
  20. 20.
    Correa, S., Freitas, A.A., Johnson, C.G.: Particle Swarm and Bayesian networks applied to attribute selection for protein functional classification. In: Proc. of the GECCO 2007 workshop on particle swarms, The second decade, pp. 2651–2658 (2007)Google Scholar
  21. 21.
    Jain, C.K., Prasad, Y.: Feature selection for siRNA efficacy prediction using natural computation. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 1759–1764. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yamuna Prasad
    • 1
  • K. Kanad Biswas
    • 1
  • Chakresh Kumar Jain
    • 2
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyDelhiIndia
  2. 2.Department of BiotechnologyJaypee Institute of Information Technology UniversityNoidaIndia

Personalised recommendations