Advertisement

Efficiently Joining Group Patterns in SPARQL Queries

  • María-Esther Vidal
  • Edna Ruckhaus
  • Tomas Lampo
  • Amadís Martínez
  • Javier Sierra
  • Axel Polleres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6088)

Abstract

In SPARQL, conjunctive queries are expressed by using shared variables across sets of triple patterns, also called basic graph patterns. Based on this characterization, basic graph patterns in a SPARQL query can be partitioned into groups of acyclic patterns that share exactly one variable, or star-shaped groups. We observe that the number of triples in a group is proportional to the number of individuals that play the role of the subject or the object; however, depending on the degree of participation of the subject individuals in the properties, a group could be not much larger than a class or type to which the subject or object belongs. Thus, it may be significantly more efficient to independently evaluate each of the groups, and then merge the resulting sets, than linearly joining all triples in a basic graph pattern. Based on this observation, we have developed query optimization and evaluation techniques on star-shaped groups. We have conducted an empirical analysis on the benefits of the optimization and evaluation techniques in several SPARQL query engines. We observe that our proposed techniques are able to speed up query evaluation time for join queries with star-shaped patterns by at least one order of magnitude.

Keywords

Evaluation Cost Query Evaluation Query Optimizer Conjunctive Query SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/
  2. 2.
    Ruckhaus, E., Ruiz, E., Vidal, M.: OneQL: An Ontology Efficient Query Language Engine for the Semantic Web. In: Proceedings ALPSWS 2007 (2007)Google Scholar
  3. 3.
    Dickinson, I.: The JenaOntology API., http://jena.sourceforge.net/ontology/index.html
  4. 4.
    Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659 (2008)Google Scholar
  5. 5.
    Broekstra, J., Kampman, A., Harmelen, F.: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information. In: Spinning the Semantic Web, pp. 197–222 (2003)Google Scholar
  6. 6.
    Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 310–327. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Perez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: International Semantic Web Conference, pp. 30–43 (2006)Google Scholar
  8. 8.
    Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection in a Relational Database Management System. In: Proceedings of ACM Sigmod, pp. 23–34 (1979)Google Scholar
  9. 9.
    Lipton, R., Naughton, J.: Query size estimation by adaptive sampling (extended abstract). In: Proceedings of ACM Sigmod, pp. 40–46 (1990)Google Scholar
  10. 10.
    Lampo, T., Ruckhaus, E., Sierra, J., Vidal, M.E., Martinez, A.: OneQL: An Ontology-based Architecture to Efficiently Query Resources on the Semantic Web. In: The 5th International Workshop on Scalable Semantic Web Knowledge Base Systems at ISWC (2009)Google Scholar
  11. 11.
  12. 12.
    Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for Querying Graph Structured Data from the Web. In: ISWC/ASWC, pp. 211–224 (2007)Google Scholar
  13. 13.
    Seaborne, A.: Jena TDB, http://openjena.org/wiki/TDB
  14. 14.
    Wielemaker, J.: An Optimised Semantic Web Query Language Implementation in Prolog. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 128–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Stoker, M., Seaborne, A., Bernstein, A., Keifer, C., Reynolds, D.: SPARQL Basic Graph Pattern Optimizatin Using Selectivity Estimation. In: Proceedings of the 17th International Conference on World Wide Web (WWW), pp. 595–604 (2008)Google Scholar
  16. 16.
    Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in database and logic programming systems. Theory Pract. Log. Program. 8(2), 129–165 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1), 1008–1019 (2008)Google Scholar
  18. 18.
    Fletcher, G., Beck, P.: Scalable Indexing of RDF Graph for Efficient Join Processing. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM), pp. 1513–1516 (2009)Google Scholar
  19. 19.
    McGlothlin, J., Khan, L.: RDFKB: Efficient Support For RDF Inference Queries and Knowledge Management. In: Proceedings of International Database Engineering and Applications Symposium (IDEAS), pp. 259–266 (2009)Google Scholar
  20. 20.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically partitioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406 (2009)CrossRefGoogle Scholar
  21. 21.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Management Using Vertical Partitioning. In: Proceedings of the 33th International Conference on Very Large Data Bases (VLDB), pp. 411–422 (2007)Google Scholar
  22. 22.
    Sidirourgos, L., Goncalves, R., Kersten, M.L., Nes, N., Manegold, S.: Column-store support for RDF data management: not all swans are white. PVLDB 1(2), 1553–1563 (2008)Google Scholar
  23. 23.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia and WordNet. Elsevier Journal of Web Semantics 6(3), 203–217 (2008)CrossRefGoogle Scholar
  24. 24.
    Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Providence, Rhode Island, USA, pp. 627–640. ACM Press, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • María-Esther Vidal
    • 1
  • Edna Ruckhaus
    • 1
  • Tomas Lampo
    • 1
  • Amadís Martínez
    • 1
    • 2
  • Javier Sierra
    • 1
  • Axel Polleres
    • 3
  1. 1.Universidad Simón BolívarCaracasVenezuela
  2. 2.Universidad de CaraboboVenezuela
  3. 3.Digital Enterprise Research InstituteNational University of IrelandGalwayIreland

Personalised recommendations