Three-Valued Paraconsistent Reasoning for Semantic Web Agents

  • Linh Anh Nguyen
  • Andrzej Szałas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6070)

Abstract

Description logics [1] refer to a family of formalisms concentrated around concepts, roles and individuals. They are used in many multiagent and semantic web applications as a foundation for specifying knowledge bases and reasoning about them. One of widely applied description logics is \(\mathcal{SHIQ}\) [7,8]. In the current paper we address the problem of inconsistent knowledge. Inconsistencies may naturally appear in the considered application domains, for example as a result of fusing knowledge from distributed sources. We define three three-valued paraconsistent semantics for \(\mathcal{SHIQ}\), reflecting different meanings of concept inclusion of practical importance. We also provide a quite general syntactic condition of safeness guaranteeing satisfiability of a knowledge base w.r.t. three-valued semantics and define a faithful translation of our formalism into a suitable version of a two-valued description logic. Such a translation allows one to use existing tools and \(\mathcal{SHIQ}\) reasoners to deal with inconsistent knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, Stocksfield, pp. 30–55. Oriel Press (1977)Google Scholar
  3. 3.
    Belnap, N.D.: A useful four-valued logic. In: Eptein, G., Dunn, J.M. (eds.) Modern Uses of Many Valued Logic, pp. 8–37. Reidel, Dordrechtz (1977)Google Scholar
  4. 4.
    Béziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.): Handbook of Paraconsistency. Logic and cognitive systems, vol. 9. College Publications (2007)Google Scholar
  5. 5.
    Bloesch, A.: A tableau style proof system for two paraconsistent logics. Notre Dame Journal of Formal Logic 34(2), 295–301 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques. In: A Rough Set Approach, Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  8. 8.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic SHIQ. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 482–496. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand, Princeton (1952)Google Scholar
  10. 10.
    Ma, Y., Hitzler, P.: Paraconsistent reasoning for OWL 2. In: Polleres, A. (ed.) RR 2009. LNCS, vol. 5837, pp. 197–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent reasoning for expressive and tractable description logics. In: Proc. of Description Logics (2008)Google Scholar
  12. 12.
    Maluszyński, J., Szałas, A., Vitória, A.: Paraconsistent logic programs with four-valued rough sets. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 41–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Meghini, C., Straccia, U.: A relevance terminological logic for information retrieval. In: Proc. of SIGIR 1996, pp. 197–205. ACM, New York (1996)CrossRefGoogle Scholar
  14. 14.
    Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. part II: A tableau algorithm for CACL\(^{\mbox{c}}\). Journal of Applied Logic 6(3), 343–360 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 343–357. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Vitória, A., Maluszyński, J., Szałas, A.: Modeling and reasoning in paraconsistent rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)MATHMathSciNetGoogle Scholar
  17. 17.
    Zhang, X., Qi, G., Ma, Y., Lin, Z.: Quasi-classical semantics for expressive description logics. In: Proc. of Description Logics (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Linh Anh Nguyen
    • 1
  • Andrzej Szałas
    • 1
    • 2
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations