User Modeling Based on Emergent Domain Semantics

  • Marián Šimko
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6075)


In this paper we present an approach to user modeling based on the domain model that we generate automatically by resource (text) content processing and analysis of associated tags from a social annotation service. User’s interests are modeled by overlaying the domain model – via keywords extracted from resource’s (text) content, and tags assigned by the user or other (similar) users. The user model is derived automatically. We combine content- and tag-based approaches, shifting our approach beyond flat “folksonomical” representation of user interests to involve relationships between both keywords and tags.


user modeling emergent domain semantics automatic domain model composition folksonomy text mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Modeling and User-Adapted Interaction 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  2. 2.
    Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I.: Towards a Tag-Based User Model: How Can User Model Benefit from Tags? In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 445–449. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Durao, F., Dolog, P.: A personalized tag-based recommendation in social web systems. In: Tasso, D.A., Farzan, R., Kleanthous, S., Bueno Vallejo, D., Vassileva, J. (eds.) Proc. of Int. Workshop on Adaptation and Personalization for Web 2.0 (AP-WEB 2.0 2009) at UMAP2009, CEUR,, Trento, Italy, vol. 485 (2009)Google Scholar
  4. 4.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can Social Bookmarking Improve Web Search? In: Proc. of the WSDM 2008, pp. 195–206 (2008)Google Scholar
  5. 5.
    Kajaba, M., Návrat, P., Chudá, D.: A Simple Personalization Layer Improving Relevancy of Web Search. Computing and Information Systems Journal 13(3), 29–35 (2009)Google Scholar
  6. 6.
    Knoth, P., Schmidt, M., Smrž, P., Zdráhal, Z.: Towards a Framework for Comparing Automatic Term Recognition Methods. In: Znalosti 2009, pp. 83–94 (2009)Google Scholar
  7. 7.
    Nakamoto, R., Nakajima, S., Miyazaki, J., Uemura, S.: Tag-based contextual collaborative filtering. Int. Journal of Computer Science, IAENG 34(2) (2007)Google Scholar
  8. 8.
    Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy mining for ITNG’06 submissions. In: Proc.of the 3rd Int. Conf. on Information Tech.: New Generations, Washington, DC, USA, pp. 388–393. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  9. 9.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Šimko, M., Bieliková, M.: Automated Educational Course Metadata Generation Based on Semantics Discovery. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 99–105. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Šimko, M., Bieliková, M.: Automatic Concept Relationships Discovery for an Adaptive E-course. In: Barnes, T., et al. (eds.) Proc. of Educational Data Mining 2009: 2nd Int. Conf. on Educational Data Mining, Cordoba, Spain, pp. 171–179 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marián Šimko
    • 1
  • Mária Bieliková
    • 1
  1. 1.Institute of Informatics and Software Engineering, Faculty of Informatics and Information TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations