Advertisement

IntrospectiveViews: An Interface for Scrutinizing Semantic User Models

  • Fedor Bakalov
  • Birgitta König-Ries
  • Andreas Nauerz
  • Martin Welsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6075)

Abstract

User models are a key component for user-adaptive systems. They represent information about users such as interests, expertise, goals, traits, etc. This information is used to achieve various adaptation effects, e.g., recommending relevant documents or products. To ensure acceptance by users, these models need to be scrutable, i.e., users must be able to view and alter them to understand and if necessary correct the assumptions the system makes about the user. However, in most existing systems, this goal is not met. In this paper, we introduce IntrospectiveViews, an interface that enables the user to view and edit her user model. Furthermore, we present the results of a formative evaluation that show the importance users give in general to different aspects of scrutable user models and also substantiate our claim that IntrospectiveViews is an appropriate realization of an interface to such models.

Keywords

Interest Group User Model Adaptive System User Interest Font Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brusilovsky, P., Millàn, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Adelson, B., Dumais, S., Olson, J. (eds.) Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, pp. 152–158. ACM, New York (1994)Google Scholar
  3. 3.
    Kay, J.: Scrutable adaptation: Because we can and must. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 11–19. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Jameson, A.: Adaptive interfaces and agents. In: Sears, A., Jacko, J. (eds.) The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications, 2nd edn., pp. 433–458. CRC Press, Boca Raton (2008)Google Scholar
  5. 5.
    Cook, R., Kay, J.: The justified user model: a viewable, explained user model. In: Goodman, B., Kobsa, A., Litman, D. (eds.) Proc. of the 4th Int. Conf. on User Modeling, pp. 145–150 (1994)Google Scholar
  6. 6.
    Orwant, J.: Appraising the user of user models: Interface guidelines. In: Goodman, B., Kobsa, A., Litman, D. (eds.) Proc. of the 4th Int. Conf. on User Modeling, pp. 73–78 (1994)Google Scholar
  7. 7.
    Bakalov, F., König-Ries, B., Nauerz, A., Welsch, M.: A Hybrid Approach to Identifying User Interests in Web Portals. In: Erfurth, C., Eichler, G., Schau, V. (eds.) Proc. of the 9th Int. Conf. on Innovative Internet Community Systems, Bonn. LNI, vol. 148, pp. 123–134. GI (2009)Google Scholar
  8. 8.
    Kliger, J.: Model planes and totem poles: Methods for visualizing user models. Master’s thesis, MIT Media Lab. (1995)Google Scholar
  9. 9.
    Apted, T., Kay, J., Lum, A., Uther, J.: Visualisation of ontological inferences for user control of personal web agents. In: Banissi, E., Börner, K., Chen, C., Clapworthy, G., Maple, C., Lobben, A., Moore, C., Roberts, J., Ursyn, A., Zhang, J. (eds.) Proc. of the 7th Int. Conf. on Information Visualization, Washington D.C., pp. 306–313. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  10. 10.
    Kay, J., Lum, A.: Building user models from observations of users accessing multimedia learning objects. In: Nürnberger, A., Detyniecki, M. (eds.) AMR 2003. LNCS, vol. 3094, pp. 36–57. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Dimitrova, V.: STyLE-OLM: Interactive open learner modelling. International Journal of Artificial Intelligence in Education 17(2), 35–78 (2003)MathSciNetGoogle Scholar
  12. 12.
    Mabbott, A., Bull, S.: Alternative views on knowledge: Presentation of open learner models. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 689–698. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proc. of the 1996 IEEE Symposium on Visual Languages, Washington D.C., pp. 336–343. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fedor Bakalov
    • 1
  • Birgitta König-Ries
    • 1
  • Andreas Nauerz
    • 2
  • Martin Welsch
    • 2
  1. 1.Friedrich Schiller University of Jena 
  2. 2.IBM Deutschland Research and Development GmbH 

Personalised recommendations