Interaction and Personalization of Criteria in Recommender Systems

  • Shawn R. Wolfe
  • Yi Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6075)


A user’s informational need and preferences can be modeled by criteria, which in turn can be used to prioritize candidate results and produce a ranked list. We examine the use of such a criteria-based user model separately in two representative recommendation tasks: news article recommendations and product recommendations. We ask the following: are there nonlinear interactions among the criteria; and should the models be personalized? We assume that that user ratings on each criterion are available, and use machine learning to infer a user model that combines these multiple ratings into a single overall rating. We found that the ratings of different criteria have a nonlinear interaction in some cases, for example, article novelty and subject relevance often interact. We also found that these interactions vary from user to user.


information filtering multiple criteria nonlinear models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Triantaphyllou, E.: Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  2. 2.
    Wolfe, S.R., Zhang, Y.: User-centric multi-criteria information retrieval. In: Allan, J., Aslam, J., Sanderson, M., Zhai, C., Zobel, J. (eds.) SIGIR ’09: Proceedings of the 32nd international ACM conference on Research and development in information retrieval, pp. 818–819. ACM, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: Efthimiadis, E.N., Dumais, S., Hawking, D., Järvelin, K. (eds.) SIGIR ’06: Proceedings of the 29th annual international ACM conference on Research and development in information retrieval, pp. 429–436. ACM Press, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: Croft, W.B., Moffat, A., van Rijsbergen, C.J., Wilkinson, R., Zobel, J. (eds.) SIGIR ’98: Proceedings of the 21st annual international ACM conference on Research and development in information retrieval, pp. 335–336. ACM, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering. In: Järvelin, K., Beaulieu, M., Baeza-Yates, R., Myaeng, S.H. (eds.) SIGIR ’02: Proceedings of the 25th annual international ACM conference on Research and development in information retrieval, pp. 81–88. ACM, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence level. In: Clarke, C., Cormack, G., Callan, J., Hawking, D., Smeaton, A. (eds.) SIGIR ’03: Proceedings of the 26th annual international ACM conference on Research and development in information retrieval, pp. 314–321. ACM, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Barry, C.L.: User-defined relevance criteria: an exploratory study. J. Am. Soc. Inf. Sci. 45(3), 149–159 (1994)CrossRefGoogle Scholar
  8. 8.
    Maglaughlin, K., Sonnenwald, D.: User perspectives on relevance criteria: a comparison among relevant, partially relevant, and not-relevant judgements. J. Am. Soc. Inf. Sci. Technol. 53(5), 327–342 (2002)CrossRefGoogle Scholar
  9. 9.
    Tombros, A., Ruthven, I., Jose, J.M.: How users assess web pages for information seeking. J. Am. Soc. Inf. Sci. Technol. 56(4), 327–344 (2005)CrossRefGoogle Scholar
  10. 10.
    Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web 10(4), 415–441 (2007)CrossRefGoogle Scholar
  11. 11.
    Pasi, G., Bordogna, G., Villa, R.: A multi-criteria content-based filtering system. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N., Kando, N. (eds.) SIGIR ’07: Proceedings of the 30th Annual International ACM conference on Research and Development in Information Retrieval, pp. 775–776. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    de Gemmis, M., Semeraro, G., Lops, P., Basile, P.: A retrieval model for personalized searching relying on content-based user profiles. In: Mobasher, B., Anand, S.S., Kobsa, A., Jannach, D. (eds.) 6th AAAI Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (ITWP 2008), pp. 1–9 (2008)Google Scholar
  13. 13.
    Pognačnik, M., Tasič, J., Košir, A.: Optimization of multi-attribute user modeling approach. International Journal of Electronics and Communications 58(4), 402–412 (2004)Google Scholar
  14. 14.
    Nguyen, H., Haddawy, P.: The decision-theoretic video advisor. In: Kautz, H. (ed.) AAAI-98 Workshop on Recommender Systems, pp. 77–80 (1998)Google Scholar
  15. 15.
    Chajewska, U., Koller, D.: Utilities as random variables: Density estimation and structure discovery. In: Boutilier, C., Goldszmidt, M. (eds.) Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 63–71 (2000)Google Scholar
  16. 16.
    Robu, V., Somefun, D.J.A., La Poutré, J.A.: Modeling complex multi-issue negotiations using utility graphs. In: Pechoucek, M., Steiner, D., Thompson, S. (eds.) AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 280–287. ACM, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Zhang, Y.: Yow user study data: Implicit and explicit feedback for news recommendation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shawn R. Wolfe
    • 1
    • 2
  • Yi Zhang
    • 1
  1. 1.School of EngineeringUniversity of California Santa CruzSanta CruzUSA
  2. 2.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations